Skip to main content
Top
Published in: Calcolo 1/2021

01-03-2021

A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem

Authors: Jian Meng, Gang Wang, Liquan Mei

Published in: Calcolo | Issue 1/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we introduce a \(C^{0}\) virtual element method for the Helmholtz transmission eigenvalue problem, which is a fourth-order non-selfadjoint eigenvalue problem. We consider the mixed formulation of the eigenvalue problem discretized by the lowest-order virtual elements. This discrete scheme is based on a conforming \(H^{1}(\varOmega )\times H^{1}(\varOmega )\) discrete formulation, which makes use of lower regular virtual element spaces. However, the discrete scheme is a non-classical mixed method due to the non-selfadjointness, then we cannot use the framework of classical eigenvalue problem directly. We employ the spectral theory of compact operator to prove the spectral approximation. Finally, some numerical results show that numerical eigenvalues obtained by the proposed numerical scheme can achieve the optimal convergence order.
Literature
1.
go back to reference Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L., Russo, A.: Equivalent projections for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)MathSciNetMATHCrossRef Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L., Russo, A.: Equivalent projections for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)MathSciNetMATHCrossRef
3.
go back to reference Antonietti, P., Beirão Da Veiga, L., Scacchi, S., Verani, M.: A \({C}^{1}\) virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 36–56 (2016)MATH Antonietti, P., Beirão Da Veiga, L., Scacchi, S., Verani, M.: A \({C}^{1}\) virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 36–56 (2016)MATH
4.
go back to reference Bab\(\check{u}\)ska, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991) Bab\(\check{u}\)ska, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)
5.
go back to reference Beirão Da Veiga, L., Manzini, G.: A virtual element menthod with arbitrary regularity. IMA J. Numer. Anal. 34(2), 759–781 (2013)MATHCrossRef Beirão Da Veiga, L., Manzini, G.: A virtual element menthod with arbitrary regularity. IMA J. Numer. Anal. 34(2), 759–781 (2013)MATHCrossRef
6.
go back to reference Beirão Da Veiga, L., Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the acoustic vibration problem. Numer. Math. 136(3), 725–763 (2017)MathSciNetMATHCrossRef Beirão Da Veiga, L., Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the acoustic vibration problem. Numer. Math. 136(3), 725–763 (2017)MathSciNetMATHCrossRef
7.
go back to reference Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A Basic principles of virtual element methods. In: Mathematical Models and Methods in Applied Sciences, vol. 1, pp. 199–214 (2013) Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A Basic principles of virtual element methods. In: Mathematical Models and Methods in Applied Sciences, vol. 1, pp. 199–214 (2013)
8.
go back to reference Beirão Da Veiga, L., Lipnikov, K., Manzini, G.: Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49(5), 1737–1760 (2011)MathSciNetMATHCrossRef Beirão Da Veiga, L., Lipnikov, K., Manzini, G.: Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49(5), 1737–1760 (2011)MathSciNetMATHCrossRef
9.
go back to reference Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: H(div) and H(curl)-conforming VEM. Numer. Math. 133(2), 303–332 (2015)MATH Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: H(div) and H(curl)-conforming VEM. Numer. Math. 133(2), 303–332 (2015)MATH
10.
go back to reference Beirão Da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)MathSciNetMATHCrossRef Beirão Da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)MathSciNetMATHCrossRef
11.
go back to reference Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016)MathSciNetMATHCrossRef Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016)MathSciNetMATHCrossRef
12.
go back to reference Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element methods for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)MathSciNetMATHCrossRef Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element methods for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)MathSciNetMATHCrossRef
13.
go back to reference Beirão Da Veiga, L., Dassi, F., Russo, A.: High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74(5), 1110–1122 (2017)MathSciNetMATHCrossRef Beirão Da Veiga, L., Dassi, F., Russo, A.: High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74(5), 1110–1122 (2017)MathSciNetMATHCrossRef
14.
go back to reference Beirão Da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)MathSciNetMATHCrossRef Beirão Da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)MathSciNetMATHCrossRef
15.
go back to reference Bellis, C., Cakoni, F., Guzina, B.: Nature of the tranmission eigenvalue spectrum for elastic bodies. IMA J. Appl. Math. 78, 895–923 (2013)MathSciNetMATHCrossRef Bellis, C., Cakoni, F., Guzina, B.: Nature of the tranmission eigenvalue spectrum for elastic bodies. IMA J. Appl. Math. 78, 895–923 (2013)MathSciNetMATHCrossRef
16.
go back to reference Benedetto, M., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306, 148–166 (2016)MathSciNetMATHCrossRef Benedetto, M., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306, 148–166 (2016)MathSciNetMATHCrossRef
17.
go back to reference Benedetto, M., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 311, 18–40 (2016)MathSciNetMATHCrossRef Benedetto, M., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 311, 18–40 (2016)MathSciNetMATHCrossRef
18.
20.
go back to reference Brenner, S., Scott, R.: The Mathematical Theory of Finte Element Methods (Texts in Applied Mathematics), vol. 15. Springer, New York (2008) Brenner, S., Scott, R.: The Mathematical Theory of Finte Element Methods (Texts in Applied Mathematics), vol. 15. Springer, New York (2008)
21.
go back to reference Brezzi, F., Falk, R., Marini, L.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2016)MathSciNetMATHCrossRef Brezzi, F., Falk, R., Marini, L.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2016)MathSciNetMATHCrossRef
22.
go back to reference Cáceres, E., Gatica, G.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37, 296–331 (2017)MathSciNetMATHCrossRef Cáceres, E., Gatica, G.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37, 296–331 (2017)MathSciNetMATHCrossRef
23.
go back to reference Cáceres, E., Gatica, G., Sequeira, F.: A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27, 707–743 (2017)MathSciNetMATHCrossRef Cáceres, E., Gatica, G., Sequeira, F.: A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27, 707–743 (2017)MathSciNetMATHCrossRef
24.
go back to reference Cáceres, E., Gatica, G., Sequeira, F.: A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer. Anal. 56, 317–343 (2018)MathSciNetMATHCrossRef Cáceres, E., Gatica, G., Sequeira, F.: A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer. Anal. 56, 317–343 (2018)MathSciNetMATHCrossRef
25.
go back to reference Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 88(4), 475–493 (2009)MathSciNetMATHCrossRef Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 88(4), 475–493 (2009)MathSciNetMATHCrossRef
26.
go back to reference Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)MathSciNetMATHCrossRef Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)MathSciNetMATHCrossRef
27.
go back to reference Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14(4), 419–427 (2014)MathSciNetMATHCrossRef Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14(4), 419–427 (2014)MathSciNetMATHCrossRef
28.
go back to reference Camaño, J., Rodríguez, R., Venegas, P.: Convergence of a lowest-order finite element method for the transmission eigenvalue problem. Calcolo 55, 33 (2018)MathSciNetMATHCrossRef Camaño, J., Rodríguez, R., Venegas, P.: Convergence of a lowest-order finite element method for the transmission eigenvalue problem. Calcolo 55, 33 (2018)MathSciNetMATHCrossRef
29.
go back to reference Cangiani, A., Gardini, F., Manzini, G.: Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Eng. 200, 1150–1160 (2011)MathSciNetMATHCrossRef Cangiani, A., Gardini, F., Manzini, G.: Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Eng. 200, 1150–1160 (2011)MathSciNetMATHCrossRef
30.
go back to reference Cangiani, A., Georgoulis, E., Pryer, T., Sutton, O.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)MathSciNetMATHCrossRef Cangiani, A., Georgoulis, E., Pryer, T., Sutton, O.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)MathSciNetMATHCrossRef
31.
go back to reference Čertík, O., Gardini, F., Manzini, G., Mascotto, L., Vacca, G.: The virtual element method for eigenvalue problems with potential terms on polytopic meshes. Appl. Math. 63, 333–365 (2018)MathSciNetMATHCrossRef Čertík, O., Gardini, F., Manzini, G., Mascotto, L., Vacca, G.: The virtual element method for eigenvalue problems with potential terms on polytopic meshes. Appl. Math. 63, 333–365 (2018)MathSciNetMATHCrossRef
32.
go back to reference Ciarlet, P., Raviart, P.: A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145. Academic Press, New York (1974) Ciarlet, P., Raviart, P.: A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145. Academic Press, New York (1974)
33.
go back to reference Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)MATHCrossRef Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)MATHCrossRef
34.
go back to reference Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Prob. 26(4), 045011 (2010)MathSciNetMATHCrossRef Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Prob. 26(4), 045011 (2010)MathSciNetMATHCrossRef
35.
go back to reference Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 1: The problem of convergence. RAIRO Anal. Numer. 12, 97–112 (1978)MathSciNetMATHCrossRef Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 1: The problem of convergence. RAIRO Anal. Numer. 12, 97–112 (1978)MathSciNetMATHCrossRef
36.
go back to reference Gardini, F., Vacca, G.: Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer. Anal. 38(4), 2026–2054 (2017)MathSciNetMATHCrossRef Gardini, F., Vacca, G.: Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer. Anal. 38(4), 2026–2054 (2017)MathSciNetMATHCrossRef
37.
go back to reference Gardini, F., Manzini, G., Vacca, G.: The nonconforming virtual element method for eigenvalue problems. ESAIM Math. Model. Numer. Anal. 53(3), 749–774 (2019)MathSciNetMATHCrossRef Gardini, F., Manzini, G., Vacca, G.: The nonconforming virtual element method for eigenvalue problems. ESAIM Math. Model. Numer. Anal. 53(3), 749–774 (2019)MathSciNetMATHCrossRef
38.
go back to reference Han, J., Yang, Y., Bi, H.: A new multigrid finite element method for the transmission eigenvalue problems. Appl. Math. Comput. 292, 96–106 (2017)MathSciNetMATH Han, J., Yang, Y., Bi, H.: A new multigrid finite element method for the transmission eigenvalue problems. Appl. Math. Comput. 292, 96–106 (2017)MathSciNetMATH
39.
go back to reference Huang, T., Huang, W., Lin, W.: A robust numerical algorithm for computing Maxwell’s tranmission eigenvalue problems. SIAM J. Sci. Comput. 37, A2403–A2423 (2015)MATHCrossRef Huang, T., Huang, W., Lin, W.: A robust numerical algorithm for computing Maxwell’s tranmission eigenvalue problems. SIAM J. Sci. Comput. 37, A2403–A2423 (2015)MATHCrossRef
40.
go back to reference Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problems of plate bending. Publ. RIMS Kyoto Univ. 14, 399–414 (1978)MathSciNetMATHCrossRef Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problems of plate bending. Publ. RIMS Kyoto Univ. 14, 399–414 (1978)MathSciNetMATHCrossRef
41.
go back to reference Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans. Math. Softw. 38(4), 1–8 (2012)MathSciNetMATHCrossRef Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans. Math. Softw. 38(4), 1–8 (2012)MathSciNetMATHCrossRef
42.
go back to reference Ji, X., Xi, Y., Xie, H.: Nonconforming finite element method for the transmission eigenvalue problem. Adv. Appl. Math. Mech. 9(1), 92–103 (2017)MathSciNetCrossRef Ji, X., Xi, Y., Xie, H.: Nonconforming finite element method for the transmission eigenvalue problem. Adv. Appl. Math. Mech. 9(1), 92–103 (2017)MathSciNetCrossRef
43.
45.
46.
go back to reference Liu, X., He, Z., Chen, Z.: A fully discrete virtual element scheme for the Cahn-Hilliard equation in mixed form. Comput. Phys. Commun. 246, 106870 (2020)MathSciNetCrossRef Liu, X., He, Z., Chen, Z.: A fully discrete virtual element scheme for the Cahn-Hilliard equation in mixed form. Comput. Phys. Commun. 246, 106870 (2020)MathSciNetCrossRef
47.
go back to reference Meng, J., Mei, L.: The matrix domain and the spectra of a generalized difference operator. J. Math. Anal. Appl. 470, 1095–1107 (2019)MathSciNetMATHCrossRef Meng, J., Mei, L.: The matrix domain and the spectra of a generalized difference operator. J. Math. Anal. Appl. 470, 1095–1107 (2019)MathSciNetMATHCrossRef
48.
go back to reference Meng, J., Zhang, Y., Mei, L.: A virtual element method for the Laplacian eigenvalue problem in mixed form. Appl. Numer. Math. 156, 1–13 (2020)MathSciNetMATHCrossRef Meng, J., Zhang, Y., Mei, L.: A virtual element method for the Laplacian eigenvalue problem in mixed form. Appl. Numer. Math. 156, 1–13 (2020)MathSciNetMATHCrossRef
49.
50.
go back to reference Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28(14), 2803–2831 (2018)MathSciNetMATHCrossRef Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28(14), 2803–2831 (2018)MathSciNetMATHCrossRef
51.
go back to reference Mora, D., Velásquez, I.: Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Eng. 360, 112687 (2019)MathSciNetMATHCrossRef Mora, D., Velásquez, I.: Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Eng. 360, 112687 (2019)MathSciNetMATHCrossRef
52.
go back to reference Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue. Math. Models Methods Appl. Sci. 25(8), 1421–1445 (2015)MathSciNetMATHCrossRef Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue. Math. Models Methods Appl. Sci. 25(8), 1421–1445 (2015)MathSciNetMATHCrossRef
53.
go back to reference Mora, D., Rivera, G., Rodríguez, R.: A posteriori error estimates for a virtual element menthod for the Steklov eigenvalue. Comput. Math. Appl. 74(9), 2172–2190 (2017)MathSciNetMATHCrossRef Mora, D., Rivera, G., Rodríguez, R.: A posteriori error estimates for a virtual element menthod for the Steklov eigenvalue. Comput. Math. Appl. 74(9), 2172–2190 (2017)MathSciNetMATHCrossRef
54.
go back to reference Mora, D., Rivera, G., Velásquez, I.: A virtual element method for the vibration problem of Kirchhoff plates. ESAIM Math. Model. Numer. Anal. 52, 1437–1456 (2018)MathSciNetMATHCrossRef Mora, D., Rivera, G., Velásquez, I.: A virtual element method for the vibration problem of Kirchhoff plates. ESAIM Math. Model. Numer. Anal. 52, 1437–1456 (2018)MathSciNetMATHCrossRef
55.
go back to reference Srivastava, P., Kumar, S.: Fine spectrum of the generalized difference operator \(\triangle _{uv}\) over the sequence space \(\ell _{1}\). Appl. Math. Comput. 218, 6407–6414 (2012)MathSciNetMATH Srivastava, P., Kumar, S.: Fine spectrum of the generalized difference operator \(\triangle _{uv}\) over the sequence space \(\ell _{1}\). Appl. Math. Comput. 218, 6407–6414 (2012)MathSciNetMATH
56.
go back to reference Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy date. Inverse Probl. 27, 015009 (2011)MATHCrossRef Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy date. Inverse Probl. 27, 015009 (2011)MATHCrossRef
57.
go back to reference Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)MathSciNetMATHCrossRef Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)MathSciNetMATHCrossRef
58.
go back to reference Yang, Y., Bi, H., Li, H., Han, J.: A \({C}^{0}\) IPG method and its error estimates for the Helmholtz transmission eigenvalue problem. J. Comput. Appl. Math. 326, 71–86 (2017)MathSciNetMATHCrossRef Yang, Y., Bi, H., Li, H., Han, J.: A \({C}^{0}\) IPG method and its error estimates for the Helmholtz transmission eigenvalue problem. J. Comput. Appl. Math. 326, 71–86 (2017)MathSciNetMATHCrossRef
Metadata
Title
A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
Authors
Jian Meng
Gang Wang
Liquan Mei
Publication date
01-03-2021
Publisher
Springer International Publishing
Published in
Calcolo / Issue 1/2021
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-020-00391-5

Other articles of this Issue 1/2021

Calcolo 1/2021 Go to the issue

Premium Partner