Skip to main content
Top
Published in:

18-08-2021

A Machine Learning Approach and Methodology for Solar Radiation Assessment Using Multispectral Satellite Images

Authors: Preeti Verma, Sunil Patil

Published in: Annals of Data Science | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, machine learning based method for the estimation of solar radiation in earth surface is presented. To design the machine learning model, multispectral (visible and infrared) satellite images of the very high-resolution from multiple locations are considered as primary data. The satellite images in visible and infrared bands, altitude, latitude, longitude, month, day, time, solar zenith angle, solar azimuth angle, viewing zenith angle, and viewing azimuth angle are used as input to the machine learning, while the solar radiation is taken as output variable. The paper specifics the entire procedure, including data collection, pre-processing, and feature selection, as well as the selection of the best machine learning algorithm, measurements, and validation. The impact of each input feature in estimating the solar radiation is also analyzed using correlation methods. SOLCAST datasets are used for Carcassonne city in the France. The analysis of correlations provides how variables are connected or linked. The Pearson correlation, Kendall rank correlation, Spearman correlation, and Phi K correlations are used in the present study and useful correlations exist because they allow us to anticipate future behaviour by relating the relevant parameters (such as azimuth angle, cloud capacity, dew point temp, air temp, DHI, DNI, horizontal component of beam radiation (Ebh), GHI, precipitable water, relative humidity, surface pressure, wind direction, wind speed, zenith, albedo daily). From the correlation results, neural network algorithm has been adopted using most relevant parameters to validate the results. Researchers and scientists may use the method to build high-efficiency solar devices like solar power plants and photovoltaic cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Koca A, Oztop HF, Varol Y, Koca GO (2011) Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey. Expert Syst Appl 38(7):8756–8762 Koca A, Oztop HF, Varol Y, Koca GO (2011) Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey. Expert Syst Appl 38(7):8756–8762
2.
go back to reference Ehnberg JS, Bollen MH (2005) Simulation of global solar radiation based on cloud observations. Sol Energy 78(2):157–162 Ehnberg JS, Bollen MH (2005) Simulation of global solar radiation based on cloud observations. Sol Energy 78(2):157–162
3.
go back to reference Akinoǧlu BG, Ecevit A (1990) Construction of a quadratic model using modified Ångstrom coefficients to estimate global solar radiation. Sol Energy 45(2):85–92 Akinoǧlu BG, Ecevit A (1990) Construction of a quadratic model using modified Ångstrom coefficients to estimate global solar radiation. Sol Energy 45(2):85–92
4.
go back to reference Sözen A, Arcaklioǧlu E, Özalp M, Kanit EG (2004) Use of artificial neural networks for mapping of solar potential in Turkey. Appl Energy 77(3):273–286 Sözen A, Arcaklioǧlu E, Özalp M, Kanit EG (2004) Use of artificial neural networks for mapping of solar potential in Turkey. Appl Energy 77(3):273–286
5.
go back to reference Mellit A (2008) Artificial Intelligence technique for modelling and forecasting of solar radiation data: a review. Int J Artif Intell Soft Comput 1(1):52–76 Mellit A (2008) Artificial Intelligence technique for modelling and forecasting of solar radiation data: a review. Int J Artif Intell Soft Comput 1(1):52–76
7.
go back to reference Lee JR, Chung CY, Ou ML (2011) Fog detection using geostationary satellite data: Temporally continuous algorithm. Asia-Pac J Atmos Sci 47(2):113–122 Lee JR, Chung CY, Ou ML (2011) Fog detection using geostationary satellite data: Temporally continuous algorithm. Asia-Pac J Atmos Sci 47(2):113–122
8.
go back to reference Ellrod GP, Achutuni RV, Daniels JM, Prins EM, Nelson JP III (1998) An assessment of GOES-8 imager data quality. Bull Am Meteor Soc 79(11):2509–2526 Ellrod GP, Achutuni RV, Daniels JM, Prins EM, Nelson JP III (1998) An assessment of GOES-8 imager data quality. Bull Am Meteor Soc 79(11):2509–2526
9.
go back to reference Prins EM, Feltz JM, Menzel WP, Ward DE (1998) An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J Geophys Res Atmos 103(D24):31821–31835 Prins EM, Feltz JM, Menzel WP, Ward DE (1998) An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J Geophys Res Atmos 103(D24):31821–31835
10.
go back to reference Ellrod GP (2001) Loss of the 12 mm ‘‘split window’’ band on GOES-M: impacts on volcanic ash detection. In: Paper presented at 11th conference on satellite meteorology and oceanography, Am. Meteorol. Soc., Madison, Wisc Ellrod GP (2001) Loss of the 12 mm ‘‘split window’’ band on GOES-M: impacts on volcanic ash detection. In: Paper presented at 11th conference on satellite meteorology and oceanography, Am. Meteorol. Soc., Madison, Wisc
11.
go back to reference Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press, Cambridge Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press, Cambridge
12.
go back to reference Zelenka A, Perez R, Seals R, Renné D (1999) Effective accuracy of satellite-derived hourly irradiances. Theoret Appl Climatol 62(3):199–207 Zelenka A, Perez R, Seals R, Renné D (1999) Effective accuracy of satellite-derived hourly irradiances. Theoret Appl Climatol 62(3):199–207
13.
go back to reference Liang S, Wang J (eds) (2019) Advanced remote sensing: terrestrial information extraction and applications. Academic Press, London Liang S, Wang J (eds) (2019) Advanced remote sensing: terrestrial information extraction and applications. Academic Press, London
14.
go back to reference Lu N, Liu R, Liu J, Liang S (2010) An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China. J Geophys Res Atmos 115(D18) Lu N, Liu R, Liu J, Liang S (2010) An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China. J Geophys Res Atmos 115(D18)
15.
go back to reference Yeom JM, Han KS, Kim YS, Jang JD (2008) Neural network determination of cloud attenuation to estimate insolation using MTSAT-1R data. Int J Remote Sens 29(21):6193–6208 Yeom JM, Han KS, Kim YS, Jang JD (2008) Neural network determination of cloud attenuation to estimate insolation using MTSAT-1R data. Int J Remote Sens 29(21):6193–6208
16.
go back to reference Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
17.
go back to reference Romano F, Cimini D, Cersosimo A, Di Paola F, Gallucci D, Gentile S, Viggiano M (2018) Improvement in surface solar irradiance estimation using HRV/MSG data. Remote Sens 10(8):1288 Romano F, Cimini D, Cersosimo A, Di Paola F, Gallucci D, Gentile S, Viggiano M (2018) Improvement in surface solar irradiance estimation using HRV/MSG data. Remote Sens 10(8):1288
18.
go back to reference Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, Berlin Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, Berlin
20.
go back to reference Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178 Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178
21.
go back to reference Park S, Im J, Jang E, Rhee J (2016) Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agric For Meteorol 216:157–169 Park S, Im J, Jang E, Rhee J (2016) Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agric For Meteorol 216:157–169
22.
go back to reference Hasni A, Sehli A, Draoui B, Bassou A, Amieur B (2012) Estimating global solar radiation using artificial neural network and climate data in the south-western region of Algeria. Energy Proc 18:531–537 Hasni A, Sehli A, Draoui B, Bassou A, Amieur B (2012) Estimating global solar radiation using artificial neural network and climate data in the south-western region of Algeria. Energy Proc 18:531–537
23.
go back to reference Ahmed M, Najmul Islam AKM (2020) Deep learning: hope or hype. Ann Data Sci 7:427–432 Ahmed M, Najmul Islam AKM (2020) Deep learning: hope or hype. Ann Data Sci 7:427–432
24.
go back to reference Verma M, Ghritlahre HK, Chandrakar G (2021) Wind speed prediction of central region of Chhattisgarh (India) using artificial neural network and multiple linear regression technique: a comparative study. Ann Data Sci 2021:1–23 Verma M, Ghritlahre HK, Chandrakar G (2021) Wind speed prediction of central region of Chhattisgarh (India) using artificial neural network and multiple linear regression technique: a comparative study. Ann Data Sci 2021:1–23
25.
go back to reference Hassani H, Huang X, Silva E, Ghodsi M (2020) Deep learning and implementations in banking. Ann Data Sci 7:433–446 Hassani H, Huang X, Silva E, Ghodsi M (2020) Deep learning and implementations in banking. Ann Data Sci 7:433–446
26.
go back to reference Voyant C, Notton G, Kalogirou S, Nivet ML, Paoli C, Motte F, Fouilloy A (2017) Machine learning methods for solar radiation forecasting: a review. Renew Energy 105:569–582 Voyant C, Notton G, Kalogirou S, Nivet ML, Paoli C, Motte F, Fouilloy A (2017) Machine learning methods for solar radiation forecasting: a review. Renew Energy 105:569–582
27.
go back to reference Hrisko J, Ramamurthy P, Gonzalez JE (2021) Estimating heat storage in urban areas using multispectral satellite data and machine learning. Remote Sens Environ 252:112125 Hrisko J, Ramamurthy P, Gonzalez JE (2021) Estimating heat storage in urban areas using multispectral satellite data and machine learning. Remote Sens Environ 252:112125
28.
go back to reference Ahmadi K, Kalantar B, Saeidi V, Harandi EK, Janizadeh S, Ueda N (2020) Comparison of machine learning methods for mapping the stand characteristics of temperate forests using multi-spectral sentinel-2 data. Remote Sens 12(18):3019 Ahmadi K, Kalantar B, Saeidi V, Harandi EK, Janizadeh S, Ueda N (2020) Comparison of machine learning methods for mapping the stand characteristics of temperate forests using multi-spectral sentinel-2 data. Remote Sens 12(18):3019
29.
go back to reference Bou-Rabee M, Sulaiman SA, Saleh MS, Marafi S (2017) Using artificial neural networks to estimate solar radiation in Kuwait. Renew Sustain Energy Rev 72:434–438 Bou-Rabee M, Sulaiman SA, Saleh MS, Marafi S (2017) Using artificial neural networks to estimate solar radiation in Kuwait. Renew Sustain Energy Rev 72:434–438
30.
go back to reference Nezhad MM, Heydari A, Groppi D, Cumo F, Garcia DA (2020) Wind source potential assessment using Sentinel 1 satellite and a new forecasting model based on machine learning: a case study Sardinia islands. Renew Energy 155:212–224 Nezhad MM, Heydari A, Groppi D, Cumo F, Garcia DA (2020) Wind source potential assessment using Sentinel 1 satellite and a new forecasting model based on machine learning: a case study Sardinia islands. Renew Energy 155:212–224
31.
go back to reference Deo RC, Şahin M, Adamowski JF, Mi J (2019) Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach. Renew Sustain Energy Rev 104:235–261 Deo RC, Şahin M, Adamowski JF, Mi J (2019) Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach. Renew Sustain Energy Rev 104:235–261
32.
go back to reference Ibrahim IA, Khatib T (2017) A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. Energy Convers Manage 138:413–425 Ibrahim IA, Khatib T (2017) A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. Energy Convers Manage 138:413–425
33.
go back to reference Vojinovic Z, Abebe YA, Ranasinghe R, Vacher A, Martens P, Mandl DJ, De Zeeuw R (2013) A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements. J Hydroinf 15(4):1408–1424 Vojinovic Z, Abebe YA, Ranasinghe R, Vacher A, Martens P, Mandl DJ, De Zeeuw R (2013) A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements. J Hydroinf 15(4):1408–1424
34.
go back to reference Tavakkoli Piralilou S, Shahabi H, Jarihani B, Ghorbanzadeh O, Blaschke T, Gholamnia K, Aryal J (2019) Landslide detection using multi-scale image segmentation and different machine learning models in the higher himalayas. Remote Sens 11(21):2575 Tavakkoli Piralilou S, Shahabi H, Jarihani B, Ghorbanzadeh O, Blaschke T, Gholamnia K, Aryal J (2019) Landslide detection using multi-scale image segmentation and different machine learning models in the higher himalayas. Remote Sens 11(21):2575
35.
go back to reference Şenkal O, Kuleli T (2009) Estimation of solar radiation over Turkey using artificial neural network and satellite data. Appl Energy 86(7–8):1222–1228 Şenkal O, Kuleli T (2009) Estimation of solar radiation over Turkey using artificial neural network and satellite data. Appl Energy 86(7–8):1222–1228
36.
go back to reference Sagawa T, Yamashita Y, Okumura T, Yamanokuchi T (2019) Satellite derived bathymetry using machine learning and multi-temporal satellite images. Remote Sens 11(10):1155 Sagawa T, Yamashita Y, Okumura T, Yamanokuchi T (2019) Satellite derived bathymetry using machine learning and multi-temporal satellite images. Remote Sens 11(10):1155
37.
go back to reference Linares-Rodriguez A, Ruiz-Arias JA, Pozo-Vazquez D, Tovar-Pescador J (2013) An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy 61:636–645 Linares-Rodriguez A, Ruiz-Arias JA, Pozo-Vazquez D, Tovar-Pescador J (2013) An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy 61:636–645
38.
go back to reference Zhou Q, Flores A, Glenn NF, Walters R, Han B (2017) A machine learning approach to estimation of downward solar radiation from satellite-derived data products: an application over a semi-arid ecosystem in the US. PLoS ONE 12(8):e0180239 Zhou Q, Flores A, Glenn NF, Walters R, Han B (2017) A machine learning approach to estimation of downward solar radiation from satellite-derived data products: an application over a semi-arid ecosystem in the US. PLoS ONE 12(8):e0180239
39.
go back to reference Yeom JM, Park S, Chae T, Kim JY, Lee CS (2019) Spatial assessment of solar radiation by machine learning and deep neural network models using data provided by the COMS MI geostationary satellite: a case study in South Korea. Sensors 19(9):2082 Yeom JM, Park S, Chae T, Kim JY, Lee CS (2019) Spatial assessment of solar radiation by machine learning and deep neural network models using data provided by the COMS MI geostationary satellite: a case study in South Korea. Sensors 19(9):2082
40.
go back to reference Bright JM (2019) Solcast: Validation of a satellite-derived solar irradiance dataset. Sol Energy 189:435–449 Bright JM (2019) Solcast: Validation of a satellite-derived solar irradiance dataset. Sol Energy 189:435–449
41.
go back to reference Jeppesen JH, Jacobsen RH, Inceoglu F, Toftegaard TS (2019) A cloud detection algorithm for satellite imagery based on deep learning. Remote Sens Environ 229:247–259 Jeppesen JH, Jacobsen RH, Inceoglu F, Toftegaard TS (2019) A cloud detection algorithm for satellite imagery based on deep learning. Remote Sens Environ 229:247–259
42.
go back to reference Foga S, Scaramuzza PL, Guo S, Zhu Z, Dilley RD Jr, Beckmann T, Laue B (2017) Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens Environ 194:379–390 Foga S, Scaramuzza PL, Guo S, Zhu Z, Dilley RD Jr, Beckmann T, Laue B (2017) Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens Environ 194:379–390
43.
go back to reference Martins FR, Silva SAB, Pereira EB, Abreu SL (2008) The influence of cloud cover index on the accuracy of solar irradiance model estimates. Meteorol Atmos Phys 99(3):169–180 Martins FR, Silva SAB, Pereira EB, Abreu SL (2008) The influence of cloud cover index on the accuracy of solar irradiance model estimates. Meteorol Atmos Phys 99(3):169–180
44.
go back to reference Cano D, Monget JM, Albuisson M, Guillard H, Regas N, Wald L (1986) A method for the determination of the global solar radiation from meteorological satellite data. Sol Energy 37(1):31–39 Cano D, Monget JM, Albuisson M, Guillard H, Regas N, Wald L (1986) A method for the determination of the global solar radiation from meteorological satellite data. Sol Energy 37(1):31–39
45.
go back to reference Diabaté L, Demarcq H, Michaud-Regas N, Wald L (1987) Estimating incident solar radiation at the surface from images of the Earth transmitted by geostationary satellites: the Heliosat Project. Int J Solar Energy 5(5–6):261–278 Diabaté L, Demarcq H, Michaud-Regas N, Wald L (1987) Estimating incident solar radiation at the surface from images of the Earth transmitted by geostationary satellites: the Heliosat Project. Int J Solar Energy 5(5–6):261–278
46.
go back to reference Rigollier C, Lefèvre M, Wald L (2004) The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol Energy 77(2):159–169 Rigollier C, Lefèvre M, Wald L (2004) The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol Energy 77(2):159–169
47.
go back to reference Hammer A, Heinemann D, Hoyer C, Kuhlemann R, Lorenz E, Müller R, Beyer HG (2003) Solar energy assessment using remote sensing technologies. Remote Sens Environ 86(3):423–432 Hammer A, Heinemann D, Hoyer C, Kuhlemann R, Lorenz E, Müller R, Beyer HG (2003) Solar energy assessment using remote sensing technologies. Remote Sens Environ 86(3):423–432
48.
go back to reference Rigollier C, Bauer O, Wald L (2000) On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the Heliosat method. Sol Energy 68(1):33–48 Rigollier C, Bauer O, Wald L (2000) On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the Heliosat method. Sol Energy 68(1):33–48
49.
go back to reference Happ H, Lin WH, Raschke E, Rieland M, Stuhlmann R (1989) Solar radiation atlas of Africa. Total and diffuse fluxes at ground level measured by geostationary satellites. Personal communication sent Happ H, Lin WH, Raschke E, Rieland M, Stuhlmann R (1989) Solar radiation atlas of Africa. Total and diffuse fluxes at ground level measured by geostationary satellites. Personal communication sent
50.
go back to reference Perez R (2002) Time specific irradiances derived from geostationary satellite images. J Sol Energy Eng 124(1):1–1 Perez R (2002) Time specific irradiances derived from geostationary satellite images. J Sol Energy Eng 124(1):1–1
51.
go back to reference Möser W, Raschke E (1983) Mapping of global radiation and cloudiness from Meteosat image data-Theory and ground truth comparisons. Meteorol Rdsch 36:33–41 Möser W, Raschke E (1983) Mapping of global radiation and cloudiness from Meteosat image data-Theory and ground truth comparisons. Meteorol Rdsch 36:33–41
52.
go back to reference Pereira EB, Martins FR, Abreu SL, Couto P, Stuhlmann R, Colle S (2000) Effects of burning of biomass on satellite estimations of solar irradiation in Brazil. Sol Energy 68(1):91–107 Pereira EB, Martins FR, Abreu SL, Couto P, Stuhlmann R, Colle S (2000) Effects of burning of biomass on satellite estimations of solar irradiation in Brazil. Sol Energy 68(1):91–107
53.
go back to reference Martins FR, Pereira EB, Abreu SL (2007) Satellite-derived solar resource maps for Brazil under SWERA project. Sol Energy 81(4):517–528 Martins FR, Pereira EB, Abreu SL (2007) Satellite-derived solar resource maps for Brazil under SWERA project. Sol Energy 81(4):517–528
54.
go back to reference Schmetz J, Pili P, Tjemkes S, Just D, Kerkmann J, Rota S, Ratier A (2002) An introduction to Meteosat second generation (MSG). Bull Am Meteor Soc 83(7):977–992 Schmetz J, Pili P, Tjemkes S, Just D, Kerkmann J, Rota S, Ratier A (2002) An introduction to Meteosat second generation (MSG). Bull Am Meteor Soc 83(7):977–992
55.
go back to reference Verma M, Ghritlahre HK (2021) Forecasting of wind speed by using three different techniques of prediction models. Ann Data Sci 2021:1–33 Verma M, Ghritlahre HK (2021) Forecasting of wind speed by using three different techniques of prediction models. Ann Data Sci 2021:1–33
56.
go back to reference Polo J, Zarzalejo LF, Cony M, Navarro AA, Marchante R, Martin L, Romero M (2011) Solar radiation estimations over India using Meteosat satellite images. Sol Energy 85(9):2395–2406 Polo J, Zarzalejo LF, Cony M, Navarro AA, Marchante R, Martin L, Romero M (2011) Solar radiation estimations over India using Meteosat satellite images. Sol Energy 85(9):2395–2406
57.
go back to reference Ineichen P (2008) Conversion function between the Linke turbidity and the atmospheric water vapor and aerosol content. Sol Energy 82(11):1095–1097 Ineichen P (2008) Conversion function between the Linke turbidity and the atmospheric water vapor and aerosol content. Sol Energy 82(11):1095–1097
58.
go back to reference Hou M, Zhang T, Weng F, Ali M, Al-Ansari N, Yaseen ZM (2018) Global solar radiation prediction using hybrid online sequential extreme learning machine model. Energies 11(12):3415 Hou M, Zhang T, Weng F, Ali M, Al-Ansari N, Yaseen ZM (2018) Global solar radiation prediction using hybrid online sequential extreme learning machine model. Energies 11(12):3415
59.
go back to reference Meenal R, Selvakumar AI (2018) Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renew Energy 121:324–343 Meenal R, Selvakumar AI (2018) Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renew Energy 121:324–343
60.
go back to reference Funabashi T (ed) (2016) Integration of distributed energy resources in power systems: implementation, operation and control. Academic Press, London Funabashi T (ed) (2016) Integration of distributed energy resources in power systems: implementation, operation and control. Academic Press, London
Metadata
Title
A Machine Learning Approach and Methodology for Solar Radiation Assessment Using Multispectral Satellite Images
Authors
Preeti Verma
Sunil Patil
Publication date
18-08-2021
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 4/2023
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-021-00352-x

Premium Partner