Skip to main content
Top

2021 | OriginalPaper | Chapter

A Machine Learning Approach for Modeling Safety Stock Optimization Equation in the Cosmetics and Beauty Industry

Authors : David Díaz, Regina Marta, Germán Ortega, Hiram Ponce

Published in: Advances in Computational Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Safety Stock is generally accepted as an appropriate inventory management strategy to deal with the uncertainty of demand and supply, as well as for limiting the risk of service loss and overproduction [6]. In particular, companies from the cosmetics and beauty industry face additional inventory management challenges derived from the strict regulatory standards applicable in different jurisdictions, in addition to the constantly changing trends, which highlight the importance of defining an accurate safety stock. In this paper, on the basis of the Linear Regression, Decision Trees, Support Vector Machine (“SVM”) and Neural Network machine learning techniques, we modeled a general Safety Stock equation and one per product category for a multinational enterprise operating in the cosmetics and beauty industry. The results of our analysis indicate that the Linear Regression is the most accurate model to generate a reasonable and effective prediction of the company’s Safety Stock.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yuri Vasconcelos de Almeida, T.C.W.: Artificial intelligence (fuzzy logic) for local safety stock forecasting in multinational companies. Gestão da Produção, Operações e Sistemas 14(4), 1–10 (2019) Yuri Vasconcelos de Almeida, T.C.W.: Artificial intelligence (fuzzy logic) for local safety stock forecasting in multinational companies. Gestão da Produção, Operações e Sistemas 14(4), 1–10 (2019)
2.
go back to reference Gupta, A., Maranas, C.D.: Managing demand uncertainty in supply chain planning. Comput. Chem. Eng. 27(8–9), 1219–1227 (2003) Gupta, A., Maranas, C.D.: Managing demand uncertainty in supply chain planning. Comput. Chem. Eng. 27(8–9), 1219–1227 (2003)
3.
go back to reference Syntetos, A.A., Babai, Z., Boylan, J.E., Kolassa, S., Nikolopoulos, K.: Supply chain forecasting: theory, practice, their gap and the future. Eur. J. Oper. Res. 252(1), 1–26 (2016)MathSciNetCrossRef Syntetos, A.A., Babai, Z., Boylan, J.E., Kolassa, S., Nikolopoulos, K.: Supply chain forecasting: theory, practice, their gap and the future. Eur. J. Oper. Res. 252(1), 1–26 (2016)MathSciNetCrossRef
4.
go back to reference Bertsimas, D., Kallus, N., Hussain, A.: Inventory management in the era of big data. Prod. Oper. Manag. 25(12), 2006–2009 (2016)CrossRef Bertsimas, D., Kallus, N., Hussain, A.: Inventory management in the era of big data. Prod. Oper. Manag. 25(12), 2006–2009 (2016)CrossRef
5.
go back to reference Li, H., Jiang, D.: New model and heuristics for safety stock placement in general acyclic supply chain networks. Comput. Oper. Res. 39(7), 1333–19344 (2011)MathSciNetCrossRef Li, H., Jiang, D.: New model and heuristics for safety stock placement in general acyclic supply chain networks. Comput. Oper. Res. 39(7), 1333–19344 (2011)MathSciNetCrossRef
6.
go back to reference Gonçalves, J.N., Carvalho, M.S., Cortez, P.: Operations research models and methods for safety stock determination: a review. Elsevier 7 (2020) Gonçalves, J.N., Carvalho, M.S., Cortez, P.: Operations research models and methods for safety stock determination: a review. Elsevier 7 (2020)
7.
8.
go back to reference Çolak, M., Hatipoǧlu, T., Aydin Keskin, G., Fiǧlali, A.: A safety stock model based on order change-to-delivery response time: a case study for automotive industry. Sigma J. Eng. Nat. Sci. 37(3), 841–853 (2019) Çolak, M., Hatipoǧlu, T., Aydin Keskin, G., Fiǧlali, A.: A safety stock model based on order change-to-delivery response time: a case study for automotive industry. Sigma J. Eng. Nat. Sci. 37(3), 841–853 (2019)
9.
go back to reference Chapman, P., et al.: CRISP-DM 1.0. SPSS Inc. (2001) Chapman, P., et al.: CRISP-DM 1.0. SPSS Inc. (2001)
10.
go back to reference Zhong, W., Zhang, L.: The prediction research of safety stock based on the combinatorial forecasting model. In: International Conference on Computational Science and Engineering (2015) Zhong, W., Zhang, L.: The prediction research of safety stock based on the combinatorial forecasting model. In: International Conference on Computational Science and Engineering (2015)
Metadata
Title
A Machine Learning Approach for Modeling Safety Stock Optimization Equation in the Cosmetics and Beauty Industry
Authors
David Díaz
Regina Marta
Germán Ortega
Hiram Ponce
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-89817-5_13

Premium Partner