A Machine Learning Approach to Short-Term Body Weight Prediction in a Dietary Intervention Program | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

A Machine Learning Approach to Short-Term Body Weight Prediction in a Dietary Intervention Program

Authors : Oladapo Babajide, Tawfik Hissam, Palczewska Anna, Gorbenko Anatoliy, Arne Astrup, J. Alfredo Martinez, Jean-Michel Oppert, Thorkild I. A. Sørensen

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

Weight and obesity management is one of the emerging challenges in current health management. Nutrient-gene interactions in human obesity (NUGENOB) seek to find various solutions to challenges posed by obesity and over-weight. This research was based on utilising a dietary intervention method as a means of addressing the problem of managing obesity and overweight. The dietary intervention program was done for a period of ten weeks. Traditional statistical techniques have been utilised in analyzing the potential gains in weight and diet intervention programs. This work investigates the applicability of machine learning to improve on the prediction of body weight in a dietary intervention program. Models that were utilised include Dynamic model, Machine Learning models (Linear regression, Support vector machine (SVM), Random Forest (RF), Artificial Neural Networks (ANN)). The performance of these estimation models was compared based on evaluation metrics like RMSE, MAE and R2. The results indicate that the Machine learning models (ANN and RF) perform better than the other models in predicting body weight at the end of the dietary intervention program.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Fogler, H.S.: Elements of Chemical Reaction Engineering, p. 876. Prentice-Hall, Englewood Cliffs (1999) Fogler, H.S.: Elements of Chemical Reaction Engineering, p. 876. Prentice-Hall, Englewood Cliffs (1999)
2.
go back to reference Jéquier, E., Tappy, L.: Regulation of body weight in humans. Physiol. Rev. 79(2), 451–480 (1999) CrossRef Jéquier, E., Tappy, L.: Regulation of body weight in humans. Physiol. Rev. 79(2), 451–480 (1999) CrossRef
3.
go back to reference McArdle, W.D., Katch, V.L., Katch, F.: Exercise Physiology: Energy, Nutrition, and Human Performance. Lippincott Williams & Wilkins, Philadelphia (2001) McArdle, W.D., Katch, V.L., Katch, F.: Exercise Physiology: Energy, Nutrition, and Human Performance. Lippincott Williams & Wilkins, Philadelphia (2001)
4.
go back to reference Hall, K.D.: Computational model of in vivo human energy metabolism during semistarvation and refeeding. Am. J. Physiol. Endocrinol. Metab. 291(1), 23–37 (2006) CrossRef Hall, K.D.: Computational model of in vivo human energy metabolism during semistarvation and refeeding. Am. J. Physiol. Endocrinol. Metab. 291(1), 23–37 (2006) CrossRef
5.
go back to reference Hall, K.D.: Predicting metabolic adaptation, body weight change, and energy intake in humans. Am. J. Physiol. Endocrinol. Metab. 298(3), E449–E466 (2009) CrossRef Hall, K.D.: Predicting metabolic adaptation, body weight change, and energy intake in humans. Am. J. Physiol. Endocrinol. Metab. 298(3), E449–E466 (2009) CrossRef
6.
go back to reference Forbes, G.B.: Lean body mass-body fat interrelationships in humans. Nutr. Rev. 45(10), 225–231 (1987) CrossRef Forbes, G.B.: Lean body mass-body fat interrelationships in humans. Nutr. Rev. 45(10), 225–231 (1987) CrossRef
7.
8.
go back to reference Mast, M.: Intel Healthcare-analytics-whitepaper Mast, M.: Intel Healthcare-analytics-whitepaper
9.
go back to reference Leavell, H.R., Clark, E.G.: The Science and Art of Preventing Disease, Prolonging Life, and Promoting Physical and Mental Health and Efficiency. Krieger Publishing Company, New York (1979) Leavell, H.R., Clark, E.G.: The Science and Art of Preventing Disease, Prolonging Life, and Promoting Physical and Mental Health and Efficiency. Krieger Publishing Company, New York (1979)
10.
go back to reference Valavanis, I.K., et al.: Gene - nutrition interactions in the onset of obesity as cardiovascular disease risk factor based on a computational intelligence method. In: IEEE International Conference on Bioinformatics and Bioengineering (2008) Valavanis, I.K., et al.: Gene - nutrition interactions in the onset of obesity as cardiovascular disease risk factor based on a computational intelligence method. In: IEEE International Conference on Bioinformatics and Bioengineering (2008)
11.
go back to reference Finkelstein, E.A., Trogdon, J.G., Brown, D.S., Allaire, B.T., Dellea, P.S., Kamal-Bahl, S.J.: The lifetime medical cost burden of overweight and obesity: implications for obesity prevention. Obesity (Silver) 16(8), 1843–1848 (2008) CrossRef Finkelstein, E.A., Trogdon, J.G., Brown, D.S., Allaire, B.T., Dellea, P.S., Kamal-Bahl, S.J.: The lifetime medical cost burden of overweight and obesity: implications for obesity prevention. Obesity (Silver) 16(8), 1843–1848 (2008) CrossRef
12.
go back to reference Heo, M., Faith, M.S., Pietrobelli, A., Heymsfield, S.B.: Percentage of body fat cutoffs by sex, age, and race-ethnicity in the US adult population from NHANES 1999-2004. Am. J. Clin. Nutr. 95(3), 594–602 (2012) CrossRef Heo, M., Faith, M.S., Pietrobelli, A., Heymsfield, S.B.: Percentage of body fat cutoffs by sex, age, and race-ethnicity in the US adult population from NHANES 1999-2004. Am. J. Clin. Nutr. 95(3), 594–602 (2012) CrossRef
13.
go back to reference Shah, N.R., Braverman, E.R.: Measuring adiposity in patients: the utility of body mass index (BMI) percent body fat, and leptin. PLoS one 7(4), e33308 (2012) CrossRef Shah, N.R., Braverman, E.R.: Measuring adiposity in patients: the utility of body mass index (BMI) percent body fat, and leptin. PLoS one 7(4), e33308 (2012) CrossRef
14.
go back to reference Marmett, B., Carvalhoa, R.B., Fortesb, M.S., Cazellab, S.C.: Artificial intelligence technologies to manage obesity. Vittalle – Revista de Ciências da Saúde 30(2), 73–79 (2018) CrossRef Marmett, B., Carvalhoa, R.B., Fortesb, M.S., Cazellab, S.C.: Artificial intelligence technologies to manage obesity. Vittalle – Revista de Ciências da Saúde 30(2), 73–79 (2018) CrossRef
15.
go back to reference Spanakis, G., Weiss, G., Boh, B., Kerkhofs, V., Roefs, A.: Utilizing longitudinal data to build decision trees for profile building and predicting eating behavior. Procedia Comput. Sci. 100, 782–789 (2016) CrossRef Spanakis, G., Weiss, G., Boh, B., Kerkhofs, V., Roefs, A.: Utilizing longitudinal data to build decision trees for profile building and predicting eating behavior. Procedia Comput. Sci. 100, 782–789 (2016) CrossRef
16.
go back to reference Rodríguez-Pardo, C., et al.: Decision tree learning to predict overweight/obesity based on body mass index and gene polymporphisms. Gene 699, 88–93 (2019) CrossRef Rodríguez-Pardo, C., et al.: Decision tree learning to predict overweight/obesity based on body mass index and gene polymporphisms. Gene 699, 88–93 (2019) CrossRef
17.
go back to reference Thomas, D.M., Kuiper, P., Zaveri, H., Surve, A., Cottam, D.R.: Neural networks to predict long-term bariatric surgery outcomes. Bariatr. Times 14(12), 14–17 (2017) Thomas, D.M., Kuiper, P., Zaveri, H., Surve, A., Cottam, D.R.: Neural networks to predict long-term bariatric surgery outcomes. Bariatr. Times 14(12), 14–17 (2017)
18.
go back to reference Courcoulas, A.P., et al.: Preoperative factors and 3-year weight change in the longitudinal assessment of bariatric surgery (LABS) consortium. Surg. Obes. Relat. Dis. 11(5), 1109–1118 (2015) CrossRef Courcoulas, A.P., et al.: Preoperative factors and 3-year weight change in the longitudinal assessment of bariatric surgery (LABS) consortium. Surg. Obes. Relat. Dis. 11(5), 1109–1118 (2015) CrossRef
19.
go back to reference Hatoum, I.J., et al.: Clinical factors associated with remission of obesity-related comorbidities after bariatric surgery. JAMA Surg. 151(2), 130–137 (2016) CrossRef Hatoum, I.J., et al.: Clinical factors associated with remission of obesity-related comorbidities after bariatric surgery. JAMA Surg. 151(2), 130–137 (2016) CrossRef
20.
go back to reference Degregory, K.W., et al.: Obesity/Data Management A review of machine learning in obesity. Obes. Rev. 19(5), 668–685 (2018) CrossRef Degregory, K.W., et al.: Obesity/Data Management A review of machine learning in obesity. Obes. Rev. 19(5), 668–685 (2018) CrossRef
21.
go back to reference Babajide, O., et al.: Application of unsupervised learning in weight-loss categorisation for weight management programs. In: 10th International Conference on Dependable Systems, Services and Technologies (DESSERT) (2019) Babajide, O., et al.: Application of unsupervised learning in weight-loss categorisation for weight management programs. In: 10th International Conference on Dependable Systems, Services and Technologies (DESSERT) (2019)
22.
go back to reference Segen, J.C.: McGraw-Hill Concise Dictionary of Modern Medicine. McGraw-Hill, New York (2002) Segen, J.C.: McGraw-Hill Concise Dictionary of Modern Medicine. McGraw-Hill, New York (2002)
23.
go back to reference Safran, C.: Toward a national framework for the secondary use of health data: an American medical informatics association white paper. J. Am. Med. Inf. Assoc. 14(1), 1–9 (2007) CrossRef Safran, C.: Toward a national framework for the secondary use of health data: an American medical informatics association white paper. J. Am. Med. Inf. Assoc. 14(1), 1–9 (2007) CrossRef
24.
go back to reference Petersen, M., et al.: Randomized, multi-center trial of two hypo-energetic diets in obese subjects: high- versus low-fat content. Int. J. Obes. 30, 552–560 (2006) CrossRef Petersen, M., et al.: Randomized, multi-center trial of two hypo-energetic diets in obese subjects: high- versus low-fat content. Int. J. Obes. 30, 552–560 (2006) CrossRef
25.
go back to reference Srensen, T.I.A., et al.: Genetic polymorphisms and weight loss in obesity: a randomised trial of hypo-energetic high- versus low-fat diets. PLoS Clin. Trials 1(2), e12 (2006) CrossRef Srensen, T.I.A., et al.: Genetic polymorphisms and weight loss in obesity: a randomised trial of hypo-energetic high- versus low-fat diets. PLoS Clin. Trials 1(2), e12 (2006) CrossRef
26.
go back to reference Bartley, A.: Predictive Analytics in Healthcare: A data-driven approach to transforming care delivery. Intel Bartley, A.: Predictive Analytics in Healthcare: A data-driven approach to transforming care delivery. Intel
27.
go back to reference Thomas, D.M., Martin, C.K., Heymsfield, S., Redman, L.M., Schoeller, D.A., Levine, J.A.: A simple model predicting individual weight change in humans. J. Biol. Dyn. 5(6), 579–599 (2011) MathSciNetCrossRef Thomas, D.M., Martin, C.K., Heymsfield, S., Redman, L.M., Schoeller, D.A., Levine, J.A.: A simple model predicting individual weight change in humans. J. Biol. Dyn. 5(6), 579–599 (2011) MathSciNetCrossRef
28.
go back to reference Liaw, A., Wiener, M.: Classification and regression by RandomForest (2002) Liaw, A., Wiener, M.: Classification and regression by RandomForest (2002)
30.
go back to reference Louppe, G.: Understanding random forests: from theory to practice (2014) Louppe, G.: Understanding random forests: from theory to practice (2014)
31.
go back to reference Kohonen, T.: An introduction to neural computing. Neural Netw. 1(1), 3–16 (1988) CrossRef Kohonen, T.: An introduction to neural computing. Neural Netw. 1(1), 3–16 (1988) CrossRef
32.
go back to reference Thomas, D.M., Ciesla, A., Levine, J.A., Stevens, J.G., Martin, C.K.: A mathematical model of weight change with adaptation. Math. Biosci. Eng. MBE 6(4), 873–887 (2009) MathSciNetCrossRef Thomas, D.M., Ciesla, A., Levine, J.A., Stevens, J.G., Martin, C.K.: A mathematical model of weight change with adaptation. Math. Biosci. Eng. MBE 6(4), 873–887 (2009) MathSciNetCrossRef
33.
go back to reference Gropper, S.S., Smith, J.L., Groff, J.L.: Advanced Nutrition and Human Metabolism. Thomson Wadsworth, Belmont (2005) Gropper, S.S., Smith, J.L., Groff, J.L.: Advanced Nutrition and Human Metabolism. Thomson Wadsworth, Belmont (2005)
34.
go back to reference Han, J., Kamber, M., Pei, J.: Data Mining. Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems), 3rd edn. Morgan Kaufmann, Waltham (2011) Han, J., Kamber, M., Pei, J.: Data Mining. Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems), 3rd edn. Morgan Kaufmann, Waltham (2011)
36.
go back to reference Christiansen, E., Garby, L.: Prediction of body weight changes caused by changes in energy balance. Eur. J. Clin. Invest. 32(11), 826–830 (2002) CrossRef Christiansen, E., Garby, L.: Prediction of body weight changes caused by changes in energy balance. Eur. J. Clin. Invest. 32(11), 826–830 (2002) CrossRef
37.
go back to reference Hidalgo-Muñoz, A.R., López, M.M., Santos, I.M., Vázquez-Marrufo, M., Lang, E.W., Tomé, A.M.: Affective valence detection from EEG signals using wrapper methods. In: Emotion and Attention Recognition Based on Biological Signals and Images. InTech (2017) Hidalgo-Muñoz, A.R., López, M.M., Santos, I.M., Vázquez-Marrufo, M., Lang, E.W., Tomé, A.M.: Affective valence detection from EEG signals using wrapper methods. In: Emotion and Attention Recognition Based on Biological Signals and Images. InTech (2017)
38.
go back to reference Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014) CrossRef Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014) CrossRef
39.
go back to reference Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Research 30(1), 79–82 (2005) Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Research 30(1), 79–82 (2005)
Metadata
Title
A Machine Learning Approach to Short-Term Body Weight Prediction in a Dietary Intervention Program
Authors
Oladapo Babajide
Tawfik Hissam
Palczewska Anna
Gorbenko Anatoliy
Arne Astrup
J. Alfredo Martinez
Jean-Michel Oppert
Thorkild I. A. Sørensen
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_33