Skip to main content
Top

2025 | OriginalPaper | Chapter

A Machine Learning–Based Damage Estimation Model for Monitoring Reinforced Concrete Structures

Authors : Omair Inderyas, Sena Tayfur, Ninel Alver, F. Necati Catbas

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Acoustic emission (AE) has gained much attention in recent years for its effectiveness in nondestructive testing and continuous monitoring of civil infrastructure. As a phenomenon, when structures are loaded, AE sensors mounted on the surface of the structure receive the waves released from the damage and convert them into electrical signals. By analyzing and evaluating these recorded signals, critical information such as type, location, time of origin, size, and orientation of the damage can be identified.
Since the whole process, which includes a massive amount of dataset, is time-consuming and needs to be automated, this study aimed to develop a machine learning–based damage estimation model that would estimate fracture characteristics of concrete and would be a pioneer for the application of real-time and automated monitoring of structures. In this scope, failure behavior of concrete samples of various strengths and sizes under loading was monitored with AE using K-nearest neighbor (KNN) algorithm. A relationship was established between the load levels and damage status of the specimens with AE features. Afterward, the model was trained and tested, and fracture characteristic results estimated by the KNN models were evaluated to reveal its feasibility.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ma, G., Wu, C.: Crack type analysis and damage evaluation of BFRP-repaired pre-damaged concrete cylinders using acoustic emission technique. Constr. Build. Mater., 129674 (2023) Ma, G., Wu, C.: Crack type analysis and damage evaluation of BFRP-repaired pre-damaged concrete cylinders using acoustic emission technique. Constr. Build. Mater., 129674 (2023)
2.
go back to reference Zhang, F., Yang, Y., Naaktgeboren, M., Hendriks, M.A.N.: Probability density field of acoustic emission events: damage identification in concrete structures. Constr. Build. Mater., 126984 (2022) Zhang, F., Yang, Y., Naaktgeboren, M., Hendriks, M.A.N.: Probability density field of acoustic emission events: damage identification in concrete structures. Constr. Build. Mater., 126984 (2022)
3.
go back to reference Van Steen, C., Verstrynge, E.: Signal-based acoustic emission clustering for differentiation of damage sources in corroding reinforced concrete beams. Appl. Sci. 12(4), 2154 (2022)CrossRef Van Steen, C., Verstrynge, E.: Signal-based acoustic emission clustering for differentiation of damage sources in corroding reinforced concrete beams. Appl. Sci. 12(4), 2154 (2022)CrossRef
4.
go back to reference Pomponi, E., Vinogradov, A.: A real-time approach to acoustic emission clustering. Mech. Syst. Signal Process. 40(2), 791–804 (2013)CrossRef Pomponi, E., Vinogradov, A.: A real-time approach to acoustic emission clustering. Mech. Syst. Signal Process. 40(2), 791–804 (2013)CrossRef
5.
go back to reference Thirumalaiselvi, A., Sasmal, S.: Pattern recognition enabled acoustic emission signatures for crack characterization during damage progression in large concrete structures. Appl. Acoust. 175, 107797 (2021)CrossRef Thirumalaiselvi, A., Sasmal, S.: Pattern recognition enabled acoustic emission signatures for crack characterization during damage progression in large concrete structures. Appl. Acoust. 175, 107797 (2021)CrossRef
6.
go back to reference Carnì, D.L., Scuro, C., Sante Olivito, R., Crocco, M.C., Lamonaca, F.: Artificial intelligence based monitoring system for historical building preservation. In: International Conference on Metrology for Archaeology and Cultural Heritage, Trento, Italy (2020) Carnì, D.L., Scuro, C., Sante Olivito, R., Crocco, M.C., Lamonaca, F.: Artificial intelligence based monitoring system for historical building preservation. In: International Conference on Metrology for Archaeology and Cultural Heritage, Trento, Italy (2020)
7.
go back to reference ASTM E1316.: Standard Terminology for Nondestructive Examinations (2002) ASTM E1316.: Standard Terminology for Nondestructive Examinations (2002)
8.
go back to reference Bablani, A., Edla, D.R., Dodia, S.: Classification of EEG data using k-nearest neighbor approach for concealed information test. In: Procedia Computer Science, vol. 143, pp. 242–249. Elsevier B.V (2018) Bablani, A., Edla, D.R., Dodia, S.: Classification of EEG data using k-nearest neighbor approach for concealed information test. In: Procedia Computer Science, vol. 143, pp. 242–249. Elsevier B.V (2018)
9.
go back to reference Saini, I., Singh, D., Khosla, A.: QRS detection using K-nearest neighbor algorithm (KNN) and evaluation on standard ECG databases. J. Adv. Res. 4(4), 331–344 (2013)CrossRef Saini, I., Singh, D., Khosla, A.: QRS detection using K-nearest neighbor algorithm (KNN) and evaluation on standard ECG databases. J. Adv. Res. 4(4), 331–344 (2013)CrossRef
10.
go back to reference Radovic, M., Ghalwash, M., Filipovic, N., Obradovic, Z.: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinf. 18(1) (2017) Radovic, M., Ghalwash, M., Filipovic, N., Obradovic, Z.: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinf. 18(1) (2017)
Metadata
Title
A Machine Learning–Based Damage Estimation Model for Monitoring Reinforced Concrete Structures
Authors
Omair Inderyas
Sena Tayfur
Ninel Alver
F. Necati Catbas
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_14