Skip to main content
Top

2020 | OriginalPaper | Chapter

A Machine Learning Scheme for Tool Wear Monitoring and Replacement in IoT-Enabled Smart Manufacturing

Authors : Zeel Bharatkumar Patel, Sreekumar Muthuswamy

Published in: Innovative Product Design and Intelligent Manufacturing Systems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tool wear monitoring is an important task in a smart manufacturing industry. Detecting worn-out tools and replacing them in time can increase the efficiency significantly. Various sensors are being used in machine tools to integrate them into a smart manufacturing setup. Continuously decreasing the cost of the sensors is encouraging the use of low-cost indirect methods for the task. Using multiple sensors increases the precision of estimating tool health over the single sensor-based approach. Appropriate mathematical models relating tool wear parameters and sensors data can be used here, but machine learning models become more suitable in a large variety of applications over normal mathematical models. This paper proposes a methodology for multi-sensor-based indirect tool wear monitoring system and presents a comparison of accuracy among various machine learning models. Standard references are used to generate dummy training and testing data. Python is used to create and test the models. In the end, it has been found that Naïve Bayes and support vector machine algorithms are yielding up to 97% accuracy. This is the initial work in the development of an IoT enabled and fully automated manufacturing setup.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bernhard S (2002) On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. J Mech Syst Signal Process 16:487–546CrossRef Bernhard S (2002) On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. J Mech Syst Signal Process 16:487–546CrossRef
2.
go back to reference Sukhomay P, Stephan P, Burkhard H, Nico J, Surjya K (2011) Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. J Intell Manuf 22(4):491–504CrossRef Sukhomay P, Stephan P, Burkhard H, Nico J, Surjya K (2011) Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. J Intell Manuf 22(4):491–504CrossRef
3.
go back to reference Muhammad R, Jaharah A, Mohd ZN, Haron CHC (2013) Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system. Appl Soft Comput 13(4):1960–1968CrossRef Muhammad R, Jaharah A, Mohd ZN, Haron CHC (2013) Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system. Appl Soft Comput 13(4):1960–1968CrossRef
4.
go back to reference Mahardhika P, Eric D, Chow YL, Edwin L (2019) Metacognitive learning approach for online tool condition monitoring. J Intell Manuf 30(4):1717–1737CrossRef Mahardhika P, Eric D, Chow YL, Edwin L (2019) Metacognitive learning approach for online tool condition monitoring. J Intell Manuf 30(4):1717–1737CrossRef
5.
go back to reference Dimla DE, Lister PM (2000) On-line metal cutting tool condition monitoring. I: force and vibration analyses. Int J Mach Tools Manuf 40:739–768 Dimla DE, Lister PM (2000) On-line metal cutting tool condition monitoring. I: force and vibration analyses. Int J Mach Tools Manuf 40:739–768
6.
go back to reference Tugrul O, Yigit K (2005) Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int J Mach Tools Manuf 45(4–5):467–479 Tugrul O, Yigit K (2005) Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int J Mach Tools Manuf 45(4–5):467–479
7.
go back to reference Castejon M, Alegre E, Barreiro J, Hernandez LK (2007) On-line tool wear monitoring using geometric descriptors from digital images. Int J Mach Tools Manuf 47(12–13):1847–1853CrossRef Castejon M, Alegre E, Barreiro J, Hernandez LK (2007) On-line tool wear monitoring using geometric descriptors from digital images. Int J Mach Tools Manuf 47(12–13):1847–1853CrossRef
8.
go back to reference Jurkovic J, Korosec M, Kopac J (2005) New approach in tool wear measuring technique using CCD vision system. Int J Mach Tools Manuf 45(9):1023–1030CrossRef Jurkovic J, Korosec M, Kopac J (2005) New approach in tool wear measuring technique using CCD vision system. Int J Mach Tools Manuf 45(9):1023–1030CrossRef
9.
go back to reference Dan L, Mathew J (1990) Tool wear and failure monitoring techniques for turning—a review. Int J Mach Tools Manuf 30:579–598CrossRef Dan L, Mathew J (1990) Tool wear and failure monitoring techniques for turning—a review. Int J Mach Tools Manuf 30:579–598CrossRef
10.
go back to reference Andrew KS, Daming L, Dragan B (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510CrossRef Andrew KS, Daming L, Dragan B (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510CrossRef
11.
go back to reference Ghosha N, Ravib YB, Patrac A, Mukhopadhyayc S, Pauld S, Mohantyd AR, Chattopadhyayd AB (2007) Estimation of tool wear during CNC milling using neural network-based sensor fusion. J Mech Syst Signal Process 21:466–479CrossRef Ghosha N, Ravib YB, Patrac A, Mukhopadhyayc S, Pauld S, Mohantyd AR, Chattopadhyayd AB (2007) Estimation of tool wear during CNC milling using neural network-based sensor fusion. J Mech Syst Signal Process 21:466–479CrossRef
12.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNetMATH Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNetMATH
Metadata
Title
A Machine Learning Scheme for Tool Wear Monitoring and Replacement in IoT-Enabled Smart Manufacturing
Authors
Zeel Bharatkumar Patel
Sreekumar Muthuswamy
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2696-1_43

Premium Partners