Skip to main content
Top

2020 | OriginalPaper | Chapter

4. A Mechanical Energy Writeable Ferroelectric Memory Based on PMN-35PT Single Crystal

Author : Dr. Huajing Fang

Published in: Novel Devices Based on Relaxor Ferroelectric PMN-PT Single Crystals

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Information storage refers to the preservation of processed information in a certain format and order [1]. This is a prerequisite for ensuring that information can be used in case of need. Ferroelectric memory is a promising memory technology that is radiation resistant, fast access, and has low power consumption. It can storage data for long periods of time in open circuit [2–4].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu Y (2014) Analysis of information storage technology principles [M]. Economy and management publishing house Liu Y (2014) Analysis of information storage technology principles [M]. Economy and management publishing house
2.
go back to reference Kim K, Song YJ (2003) Integration technology for ferroelectric memory devices. Microelectron Reliab 43:385–398CrossRef Kim K, Song YJ (2003) Integration technology for ferroelectric memory devices. Microelectron Reliab 43:385–398CrossRef
3.
go back to reference Hwang SK, Bae I, Kim RH et al (2012) Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation. Adv Mater 24:5910–5914CrossRef Hwang SK, Bae I, Kim RH et al (2012) Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation. Adv Mater 24:5910–5914CrossRef
4.
go back to reference Chen ZH (2013) Ferroelectric films and novel ferroelectric memory. Doctoral thesis, Fudan University Chen ZH (2013) Ferroelectric films and novel ferroelectric memory. Doctoral thesis, Fudan University
5.
go back to reference Scott JF, Paz de Araujo CA (1989) Ferroelectric memories. Science 246:1400–1405CrossRef Scott JF, Paz de Araujo CA (1989) Ferroelectric memories. Science 246:1400–1405CrossRef
6.
go back to reference Smith RC, Seelecke S, Ounaies Z et al (2003) A free energy model for hysteresis in ferroelectric materials. J Intel Mat Syst Str 14:719–739CrossRef Smith RC, Seelecke S, Ounaies Z et al (2003) A free energy model for hysteresis in ferroelectric materials. J Intel Mat Syst Str 14:719–739CrossRef
7.
go back to reference Furukawa T (1997) Structure and functional properties of ferroelectric polymers. Adv Colloid Interfac 71:183–208CrossRef Furukawa T (1997) Structure and functional properties of ferroelectric polymers. Adv Colloid Interfac 71:183–208CrossRef
8.
go back to reference Fan FR, Lin L, Zhu G et al (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–3114CrossRef Fan FR, Lin L, Zhu G et al (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–3114CrossRef
9.
go back to reference Chen J, Zhu G, Yang W et al (2013) Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv Mater 25:6094–6099CrossRef Chen J, Zhu G, Yang W et al (2013) Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv Mater 25:6094–6099CrossRef
10.
go back to reference Zhang XS, Han MD, Wang RX et al (2013) Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett 13:1168–1172CrossRef Zhang XS, Han MD, Wang RX et al (2013) Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett 13:1168–1172CrossRef
11.
go back to reference Zi Y, Guo H, Wen Z et al (2016) Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10:4797–4805CrossRef Zi Y, Guo H, Wen Z et al (2016) Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10:4797–4805CrossRef
12.
go back to reference Zhu G, Lin ZH, Jing Q et al (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13:847–853CrossRef Zhu G, Lin ZH, Jing Q et al (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13:847–853CrossRef
13.
go back to reference Wang ZL, Chen J, Lin L (2015) Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8:2250–2282CrossRef Wang ZL, Chen J, Lin L (2015) Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8:2250–2282CrossRef
14.
go back to reference Fang HJ, Tian H, Li J et al (2016) Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence. Nano Energy 20:48–56CrossRef Fang HJ, Tian H, Li J et al (2016) Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence. Nano Energy 20:48–56CrossRef
15.
go back to reference Fang HJ, Li Q, He WH, Li J, Xue QT, Xu C, Zhang LJ, Ren TL, Dong GF, Chan HLW, Dai JY, Yan QF (2015) A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory. Nanoscale 7:17306–17311CrossRef Fang HJ, Li Q, He WH, Li J, Xue QT, Xu C, Zhang LJ, Ren TL, Dong GF, Chan HLW, Dai JY, Yan QF (2015) A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory. Nanoscale 7:17306–17311CrossRef
16.
go back to reference Jeong CK, Baek KM, Niu S et al (2014) Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett 14:7031–7038CrossRef Jeong CK, Baek KM, Niu S et al (2014) Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett 14:7031–7038CrossRef
17.
go back to reference Wang S, Lin L, Wang ZL (2012) Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12:6339–6346CrossRef Wang S, Lin L, Wang ZL (2012) Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12:6339–6346CrossRef
18.
go back to reference Lin L, Wang S, Xie Y et al (2013) Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett 13:2916–2923CrossRef Lin L, Wang S, Xie Y et al (2013) Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett 13:2916–2923CrossRef
19.
go back to reference Bai P, Zhu G, Lin ZH et al (2013) Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7:3713–3719CrossRef Bai P, Zhu G, Lin ZH et al (2013) Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7:3713–3719CrossRef
20.
go back to reference Li Y, Koshizaki N, Cai W (2011) Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coordin Chem Rev 255:357–373CrossRef Li Y, Koshizaki N, Cai W (2011) Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coordin Chem Rev 255:357–373CrossRef
21.
go back to reference Geng C, Zheng L, Fang HJ et al (2013) Fabrication of volcano-shaped nano-patterned sapphire substrates using colloidal self-assembly and wet chemical etching. Nanotechnology 24:335301CrossRef Geng C, Zheng L, Fang HJ et al (2013) Fabrication of volcano-shaped nano-patterned sapphire substrates using colloidal self-assembly and wet chemical etching. Nanotechnology 24:335301CrossRef
22.
go back to reference Fang HJ, Yan QF, Geng C et al (2016) Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory. J Appl Phys 119:014104CrossRef Fang HJ, Yan QF, Geng C et al (2016) Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory. J Appl Phys 119:014104CrossRef
23.
go back to reference Shim SE, Cha YJ, Byun JM et al (1999) Size control of polystyrene beads by multistage seeded emulsion polymerization. J Appl Polym Sci 71:2259–2269CrossRef Shim SE, Cha YJ, Byun JM et al (1999) Size control of polystyrene beads by multistage seeded emulsion polymerization. J Appl Polym Sci 71:2259–2269CrossRef
24.
go back to reference Lee JH, Hinchet R, Kim SK et al (2015) Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ Sci 8:3605–3613CrossRef Lee JH, Hinchet R, Kim SK et al (2015) Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ Sci 8:3605–3613CrossRef
25.
go back to reference Feng Y, Zheng Y, Ma S et al (2016) High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification. Nano Energy 19:48–57CrossRef Feng Y, Zheng Y, Ma S et al (2016) High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification. Nano Energy 19:48–57CrossRef
26.
go back to reference Niu S, Wang S, Lin L et al (2013) Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci 6:3576–3583CrossRef Niu S, Wang S, Lin L et al (2013) Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci 6:3576–3583CrossRef
27.
go back to reference Wang ZL (2012) Nanogenerators for self-powered devices and systems [M]. Science Press Wang ZL (2012) Nanogenerators for self-powered devices and systems [M]. Science Press
28.
go back to reference Li F, Zhang SJ, Lin DB et al (2011) Electromechanical properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J Appl Phys 109:014108–014112CrossRef Li F, Zhang SJ, Lin DB et al (2011) Electromechanical properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J Appl Phys 109:014108–014112CrossRef
29.
go back to reference Luo NN (2015) Design and crystal growth of complex perovskite relaxor ferroelectrics with high Trt. Doctoral thesis, Tsinghua University Luo NN (2015) Design and crystal growth of complex perovskite relaxor ferroelectrics with high Trt. Doctoral thesis, Tsinghua University
30.
go back to reference Haertling GH, Zimmer WJ (1966) An analysis of hot-pressing parameters for lead zirconate-lead titanate ceramics containing 2 atom percent bismuth. Amer Ceram Soc Bull 45:1084–1089 Haertling GH, Zimmer WJ (1966) An analysis of hot-pressing parameters for lead zirconate-lead titanate ceramics containing 2 atom percent bismuth. Amer Ceram Soc Bull 45:1084–1089
31.
go back to reference Chaisan W, Yimnirun R, Ananta S et al (2007) Dielectric and ferroelectric properties of lead zirconate titanate-barium titanate ceramics prepared by a modified mixed-oxide method. Mater Chem Phys 104:113–118CrossRef Chaisan W, Yimnirun R, Ananta S et al (2007) Dielectric and ferroelectric properties of lead zirconate titanate-barium titanate ceramics prepared by a modified mixed-oxide method. Mater Chem Phys 104:113–118CrossRef
32.
go back to reference Jin BM, Kim J, Kim SC (1997) Effects of grain size on the electrical properties of PbZr0.52Ti0.48O3 ceramics. Appl Phys A 65:53–56 Jin BM, Kim J, Kim SC (1997) Effects of grain size on the electrical properties of PbZr0.52Ti0.48O3 ceramics. Appl Phys A 65:53–56
33.
go back to reference Jarupoom P, Pengpat K, Rujijanagul G (2010) Enhanced piezoelectric properties and lowered sintering temperature of Ba(Zr0.07Ti0.93)O3 by B2O3 addition. Curr Appl Phys 10:557–560 Jarupoom P, Pengpat K, Rujijanagul G (2010) Enhanced piezoelectric properties and lowered sintering temperature of Ba(Zr0.07Ti0.93)O3 by B2O3 addition. Curr Appl Phys 10:557–560
34.
go back to reference Merz WJ (1954) Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev 95:690–698CrossRef Merz WJ (1954) Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev 95:690–698CrossRef
35.
go back to reference Stadler H (1966) Forward velocity of 180 ferroelectric domain walls in BaTiO3. J Appl Phys 37:1947–1948CrossRef Stadler H (1966) Forward velocity of 180 ferroelectric domain walls in BaTiO3. J Appl Phys 37:1947–1948CrossRef
36.
go back to reference Wen BH, Liu XL, Zhang Y et al (2011) Research progress in polarization switching of ferroelectric materials. Electron Compon Materials 30:74–78 Wen BH, Liu XL, Zhang Y et al (2011) Research progress in polarization switching of ferroelectric materials. Electron Compon Materials 30:74–78
37.
go back to reference Viehland D, Li JF (2001) Kinetics of polarization reversal in 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3: heterogeneous nucleation in the vicinity of quenched random fields. J Appl Phys 90:2995–3003 Viehland D, Li JF (2001) Kinetics of polarization reversal in 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3: heterogeneous nucleation in the vicinity of quenched random fields. J Appl Phys 90:2995–3003
38.
go back to reference Zhou D, Cheung KF, Chen Y et al (2011) Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite. IEEE T Ultrason Ferr 58:477–484CrossRef Zhou D, Cheung KF, Chen Y et al (2011) Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite. IEEE T Ultrason Ferr 58:477–484CrossRef
39.
go back to reference Rajan KK, Shanthi M, Chang WS et al (2007) Dielectric and piezoelectric properties of [001] and [011]-poled relaxor ferroelectric PZN-PT and PMN-PT single crystals. Sens Actuat A 133:110–116CrossRef Rajan KK, Shanthi M, Chang WS et al (2007) Dielectric and piezoelectric properties of [001] and [011]-poled relaxor ferroelectric PZN-PT and PMN-PT single crystals. Sens Actuat A 133:110–116CrossRef
40.
go back to reference Lee HS, Min SW, Park MK et al (2012) MoS2 nanosheets for top-gate nonvolatile memory transistor channel. Small 8:3111–3115CrossRef Lee HS, Min SW, Park MK et al (2012) MoS2 nanosheets for top-gate nonvolatile memory transistor channel. Small 8:3111–3115CrossRef
41.
go back to reference Dai JY, Wang JX (2009) Study of ferroelectric domain structure and evolution in PMN-30%PT single crystals by means of piezoresponse force microscopy. Prog Phys 29:197–214 Dai JY, Wang JX (2009) Study of ferroelectric domain structure and evolution in PMN-30%PT single crystals by means of piezoresponse force microscopy. Prog Phys 29:197–214
42.
go back to reference Zhang S, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J Appl Phys 111:031301CrossRef Zhang S, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J Appl Phys 111:031301CrossRef
43.
go back to reference Zhong WL (1996) Ferroelectric physics [M]. Science Press Zhong WL (1996) Ferroelectric physics [M]. Science Press
44.
go back to reference Hu Z, Tian M, Nysten B et al (2009) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater 8:62–67CrossRef Hu Z, Tian M, Nysten B et al (2009) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater 8:62–67CrossRef
Metadata
Title
A Mechanical Energy Writeable Ferroelectric Memory Based on PMN-35PT Single Crystal
Author
Dr. Huajing Fang
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4312-8_4

Premium Partners