Skip to main content
Top
Published in:

01-12-2016 | Original Article

A medical image retrieval scheme with relevance feedback through a medical social network

Authors: Mouhamed Gaith Ayadi, Riadh Bouslimi, Jalel Akaichi

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Medical social networking sites enabled multimedia content sharing in large volumes, by allowing physicians and patients to upload their medical images. Moreover, it is necessary to employ new techniques in order to effectively handle and benefit from them. This huge volume of images needs to formulate new types of queries that pose complex questions to medical social network databases. Content-based image retrieval (CBIR) stills an active and efficient research topic to manipulate medical images. In order to palliate this situation, we propose in this paper the integration of a content-based medical image retrieval method through a medical social network, based on an efficient fusion of low-level visual image features (color, shape and texture features), which offers an efficient and flexible precision. A clear application of our CBIR system consists of providing stored images that are visually similar to a new (undiagnosed) one, allowing specialist and patients to check past examination diagnoses from comments and other physicians’ annotations, and to establish, therefore, a new diagnostic or to prepare a new report of an image’s examination. To scale up the performance of the integrated CBIR system, we implement a relevance feedback method. It is an effective method to bridge the semantic gap between low-level visual features and high-level semantic meanings. Experiments show that the proposed medical image retrieval scheme achieves better performance and accuracy in retrieving images. However, we need also to verify whether our approach is considered by the specialists as a potential aid in a real environment. To do so, we evaluate our methodology’s impact in the user’s decision, inquiring the specialists about the degree of confidence in the retrieval system. By analyzing the obtained results, we can argue that the proposed methodology presented a high acceptance regarding the specialists’ interests in the clinical practice domain and can improve the decision-making process during analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Afifi AJ, Ashour WM (2012) Content-based image retrieval using invariant color and texture features. In: International conference on digital image computing techniques and applications (DICTA). IEEE, Fremantle, WA, pp 1–6 Afifi AJ, Ashour WM (2012) Content-based image retrieval using invariant color and texture features. In: International conference on digital image computing techniques and applications (DICTA). IEEE, Fremantle, WA, pp 1–6
go back to reference Agma J, Traina M, André G, Balan R, Bortolotti LM, Traina C Jr (2007) Content-based image retrieval using approximate shape of objects. In: The 17th IEEE symposium on computer-based medical systems (CBMS’07), pp 91–96 Agma J, Traina M, André G, Balan R, Bortolotti LM, Traina C Jr (2007) Content-based image retrieval using approximate shape of objects. In: The 17th IEEE symposium on computer-based medical systems (CBMS’07), pp 91–96
go back to reference Aisen AM, Broderick LS, Winer-Muram H, Brodley CE, Kak AC, Pavlopoulou C et al (2003) Automated storage and retrieval of thin section CT images to assist diagnosis: system description and preliminary assessment. Radiology 228(1):265–270CrossRef Aisen AM, Broderick LS, Winer-Muram H, Brodley CE, Kak AC, Pavlopoulou C et al (2003) Automated storage and retrieval of thin section CT images to assist diagnosis: system description and preliminary assessment. Radiology 228(1):265–270CrossRef
go back to reference Akgül C, Rubin D, Napel S, Beaulieu C, Greenspan H, Acar B (2011) Content-based image retrieval in radiology: current status and future directions. J Digit Imaging 24:208–222CrossRef Akgül C, Rubin D, Napel S, Beaulieu C, Greenspan H, Acar B (2011) Content-based image retrieval in radiology: current status and future directions. J Digit Imaging 24:208–222CrossRef
go back to reference Almansoori W, Zarour O, Jarada TN, Karampales P, Rokne J, Alhajj R (2011) Applications of social network construction and analysis in the medical referral process. In: Proceedings of the 2011 IEEE ninth international conference on dependable, autonomic and secure computing (DASC ‘11) Almansoori W, Zarour O, Jarada TN, Karampales P, Rokne J, Alhajj R (2011) Applications of social network construction and analysis in the medical referral process. In: Proceedings of the 2011 IEEE ninth international conference on dependable, autonomic and secure computing (DASC ‘11)
go back to reference Antani S, Long LR, Thoma GR, Lee DJ (2003) Evaluation of shape indexing methods for content-based retrieval of X-ray images. In: Yeung MM, Lienhart RW, Li CS (eds) Proceedings of SPIE 5021, pp 405–416 Antani S, Long LR, Thoma GR, Lee DJ (2003) Evaluation of shape indexing methods for content-based retrieval of X-ray images. In: Yeung MM, Lienhart RW, Li CS (eds) Proceedings of SPIE 5021, pp 405–416
go back to reference Antani S, Lee D, Long LR, Thoma GR (2004) Evaluation of shape similarity measurement methods for spine X-ray images. J Vis Commun Image Represent 15(3):285–302CrossRef Antani S, Lee D, Long LR, Thoma GR (2004) Evaluation of shape similarity measurement methods for spine X-ray images. J Vis Commun Image Represent 15(3):285–302CrossRef
go back to reference Arevalillo-Herráez M, Ferri FJ, Moreno-Picot S (2013) A hybrid multi-objective optimization algorithm for content based image retrieval. Appl Soft Comput 13:4358–4369CrossRef Arevalillo-Herráez M, Ferri FJ, Moreno-Picot S (2013) A hybrid multi-objective optimization algorithm for content based image retrieval. Appl Soft Comput 13:4358–4369CrossRef
go back to reference Ashish O, Manpreet S (2012) Content based image retrieval system for medical databases (CBIR-MD)—lucratively tested on endoscopy, dental and skull images. IJCSI Int J Comput Sci Issues 9(1):300–306 Ashish O, Manpreet S (2012) Content based image retrieval system for medical databases (CBIR-MD)—lucratively tested on endoscopy, dental and skull images. IJCSI Int J Comput Sci Issues 9(1):300–306
go back to reference Bach JR, Fuller C, Gupta A, Hampapur A, Horowitz B, Humphrey R et al (1996) Virage image search engine: an open framework for image management. In: Sethi IK, Jain RC (eds) Proceedings of SPIE, vol 2670, no 1, pp 76–87 Bach JR, Fuller C, Gupta A, Hampapur A, Horowitz B, Humphrey R et al (1996) Virage image search engine: an open framework for image management. In: Sethi IK, Jain RC (eds) Proceedings of SPIE, vol 2670, no 1, pp 76–87
go back to reference Bhattacharjee N, Parekh R (2011) Skin texture analysis for medical diagnosis. In: The international conference on communication, computing and security. New York, pp 301–306 Bhattacharjee N, Parekh R (2011) Skin texture analysis for medical diagnosis. In: The international conference on communication, computing and security. New York, pp 301–306
go back to reference Bueno R, Ribeiro MX, Traina AJM (2010) Improving medical image retrieval through multi-descriptor similarity functions and association rules. In: IEEE 23rd international symposium on computer-based medical systems (CBMS), pp 309–314 Bueno R, Ribeiro MX, Traina AJM (2010) Improving medical image retrieval through multi-descriptor similarity functions and association rules. In: IEEE 23rd international symposium on computer-based medical systems (CBMS), pp 309–314
go back to reference Bugatti PH, Ponciano-Silva M, Agma J, Traina M, Traina C Jr, Marques P (2009) Content-based retrieval of medical images: from context to perception. In: 22nd IEEE international symposium on computer-based medical systems (CBMS), pp 1–8 Bugatti PH, Ponciano-Silva M, Agma J, Traina M, Traina C Jr, Marques P (2009) Content-based retrieval of medical images: from context to perception. In: 22nd IEEE international symposium on computer-based medical systems (CBMS), pp 1–8
go back to reference Bugatti PH, Ribeiro MX, Traina JM, Traina C Jr (2011) Feature selection guided by perception in medical CBIR systems. In: First IEEE international conference on healthcare informatics, imaging and systems biology, pp 323–330 Bugatti PH, Ribeiro MX, Traina JM, Traina C Jr (2011) Feature selection guided by perception in medical CBIR systems. In: First IEEE international conference on healthcare informatics, imaging and systems biology, pp 323–330
go back to reference Chechik G, Sharma V, Shalit U, Bengio S (2010) Large scale online learning of image similarity through ranking. J Mach Learn Res 11:1109–1135MathSciNetMATH Chechik G, Sharma V, Shalit U, Bengio S (2010) Large scale online learning of image similarity through ranking. J Mach Learn Res 11:1109–1135MathSciNetMATH
go back to reference Cox IJ, Miller ML, Minka TP, Papathomas TV, Yianilos PN (2000) The Bayesian image retieval system, PicHunter: theory, implementation and psychophysical experiments. IEEE Tran Image Process 9(1):20–37CrossRef Cox IJ, Miller ML, Minka TP, Papathomas TV, Yianilos PN (2000) The Bayesian image retieval system, PicHunter: theory, implementation and psychophysical experiments. IEEE Tran Image Process 9(1):20–37CrossRef
go back to reference Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):5:1–5:60CrossRef Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):5:1–5:60CrossRef
go back to reference De Oliveira JEE, Machado AMC, Chavez GC, Lopes APB, Deserno TM, De Araujo AA (2010) Mammosys: a content-based image retrieval system using breast density patterns. Comput Methods Programs Biomed 99(3):289–297CrossRef De Oliveira JEE, Machado AMC, Chavez GC, Lopes APB, Deserno TM, De Araujo AA (2010) Mammosys: a content-based image retrieval system using breast density patterns. Comput Methods Programs Biomed 99(3):289–297CrossRef
go back to reference Doulamis N, Doulamis A (2006) Evaluation of relevance feedback schemes in content-based in retrieval systems. Signal Process Image Commun 21(4):334–357CrossRefMATH Doulamis N, Doulamis A (2006) Evaluation of relevance feedback schemes in content-based in retrieval systems. Signal Process Image Commun 21(4):334–357CrossRefMATH
go back to reference Fazal M, Baharum B (2013) Analysis of distance metrics in content-based image retrieval using statistical quantized histogram texture features in the DCT domain. J King Saud Univ Comput Inf Sci 25:207–218 Fazal M, Baharum B (2013) Analysis of distance metrics in content-based image retrieval using statistical quantized histogram texture features in the DCT domain. J King Saud Univ Comput Inf Sci 25:207–218
go back to reference Feldman DL (2012) Medical social media networks: communicating across the virtual highway. Q J Health Care Pract Risk Manag Infocus 18(1):2–5 Feldman DL (2012) Medical social media networks: communicating across the virtual highway. Q J Health Care Pract Risk Manag Infocus 18(1):2–5
go back to reference Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B et al (1995) Query by image and video content: the QBIC system. Computer 28(9):23–32CrossRef Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B et al (1995) Query by image and video content: the QBIC system. Computer 28(9):23–32CrossRef
go back to reference Franklin V, Greene S (2007) Sweet talk: a text messaging support system. J Diabetes Nurs 11(1):22–26 Franklin V, Greene S (2007) Sweet talk: a text messaging support system. J Diabetes Nurs 11(1):22–26
go back to reference Goh K-S, Chang EY, Li B (2005) Using one-class and two-class SVMs for multiclass image annotation. IEEE Trans Knowl Data Eng 17(10):1333–1346CrossRef Goh K-S, Chang EY, Li B (2005) Using one-class and two-class SVMs for multiclass image annotation. IEEE Trans Knowl Data Eng 17(10):1333–1346CrossRef
go back to reference Gong J, Sun S (2011) Individual doctor recommendation model on medical social network. In: Proceedings of the 7th international conference on advanced data mining and applications (ADMA’11) Gong J, Sun S (2011) Individual doctor recommendation model on medical social network. In: Proceedings of the 7th international conference on advanced data mining and applications (ADMA’11)
go back to reference Greenspan H (2007) Medical image categorization and retrieval. For PACS using the GMM-KL framework. IEEE Trans Inf Technol BioMed 11:190–202CrossRef Greenspan H (2007) Medical image categorization and retrieval. For PACS using the GMM-KL framework. IEEE Trans Inf Technol BioMed 11:190–202CrossRef
go back to reference Grenier C (2003) The role of intermediate subject to understand the structuring of an organizational network of actors and technology—case of a care network. In: Proceedings of the 9th conference of the association information and management, Grenoble Grenier C (2003) The role of intermediate subject to understand the structuring of an organizational network of actors and technology—case of a care network. In: Proceedings of the 9th conference of the association information and management, Grenoble
go back to reference Güld MO, Thies C, Fischer B, Lehmann TM (2007) A generic concept for the implementation of medical image retrieval systems. Int Med Inform 76(2–3):252–259CrossRef Güld MO, Thies C, Fischer B, Lehmann TM (2007) A generic concept for the implementation of medical image retrieval systems. Int Med Inform 76(2–3):252–259CrossRef
go back to reference Harishchandra H, Mushigeri S, Niranjan UC (2014) Medical image retrieval–performance comparison using texture features. Int J Eng Res Dev 9(9):30–34 Harishchandra H, Mushigeri S, Niranjan UC (2014) Medical image retrieval–performance comparison using texture features. Int J Eng Res Dev 9(9):30–34
go back to reference Hoi SCHH, Jin R, Zhu JK, Lyu MR (2009) Semi-supervised SVM batch mode active learning and its applications to image retrieval. ACM Trans Inf Syst 27(3):1–29CrossRef Hoi SCHH, Jin R, Zhu JK, Lyu MR (2009) Semi-supervised SVM batch mode active learning and its applications to image retrieval. ACM Trans Inf Syst 27(3):1–29CrossRef
go back to reference Hsu W, Antani S, Long LR, Neve L, Thoma GR (2009) SPIRS: a web based image retrieval system for large biomedical databases. Int J Med Inform 78(1):13–24CrossRef Hsu W, Antani S, Long LR, Neve L, Thoma GR (2009) SPIRS: a web based image retrieval system for large biomedical databases. Int J Med Inform 78(1):13–24CrossRef
go back to reference Hu W, Xie N, Li L, Zeng X (2011) A survey on visual content-based video indexing and retrieval. IEEE Trans Syst Man Cybern C Appl Rev 41(6):797–819CrossRef Hu W, Xie N, Li L, Zeng X (2011) A survey on visual content-based video indexing and retrieval. IEEE Trans Syst Man Cybern C Appl Rev 41(6):797–819CrossRef
go back to reference Iakovidis D, Pelekis N, Kotsifakos E, Kopanakis I, Karanikas H, Theodoridis Y (2009) A pattern similarity scheme for medical imag retrieval. IEEE Trans Inf Technol Biomed 13(4):442–509CrossRef Iakovidis D, Pelekis N, Kotsifakos E, Kopanakis I, Karanikas H, Theodoridis Y (2009) A pattern similarity scheme for medical imag retrieval. IEEE Trans Inf Technol Biomed 13(4):442–509CrossRef
go back to reference ISO, IEC 25010 (2011) Systems and software engineering-Systems and software Quality Requirements and Evaluation (SQuaRE)-System and software quality models. International Standards Organization, Geneva ISO, IEC 25010 (2011) Systems and software engineering-Systems and software Quality Requirements and Evaluation (SQuaRE)-System and software quality models. International Standards Organization, Geneva
go back to reference Keysers D, Dahmen J, Ney H, Wein BB, Lehmann TM (2003) Statistica framework for model-based image retrieval in medical applications. J Electron Imaging 12(1):59–68CrossRef Keysers D, Dahmen J, Ney H, Wein BB, Lehmann TM (2003) Statistica framework for model-based image retrieval in medical applications. J Electron Imaging 12(1):59–68CrossRef
go back to reference Komali A et al (2012) 3D color feature extraction in content-based image retrieval. Int J Soft Comput Eng (IJSCE) 2(3):560–563 Komali A et al (2012) 3D color feature extraction in content-based image retrieval. Int J Soft Comput Eng (IJSCE) 2(3):560–563
go back to reference Kumar A, Kim J, Cai W, Fulham M, Feng D (2013) Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging. doi:10.1007/s10278-013-9619-2 Kumar A, Kim J, Cai W, Fulham M, Feng D (2013) Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging. doi:10.​1007/​s10278-013-9619-2
go back to reference Lee DJ, Antani S, Long LR (2003) Similarity measurement using polygon curve representation and Fourier descriptors for shape-based vertebral image retrieval. In: Sonka M, Fitzpatrick JM (eds) Proceedings of SPIE, vol 5032, pp 1283–1291 Lee DJ, Antani S, Long LR (2003) Similarity measurement using polygon curve representation and Fourier descriptors for shape-based vertebral image retrieval. In: Sonka M, Fitzpatrick JM (eds) Proceedings of SPIE, vol 5032, pp 1283–1291
go back to reference Lee DJ, Antani S, Chang Y, Gledhill K, Long LR, Christensen P (2009) CBIR of spine X-ray images on intervertebral disc space and shape profiles using feature ranking and voting consensus. Data Knowl Eng 68(12):1359–1369CrossRef Lee DJ, Antani S, Chang Y, Gledhill K, Long LR, Christensen P (2009) CBIR of spine X-ray images on intervertebral disc space and shape profiles using feature ranking and voting consensus. Data Knowl Eng 68(12):1359–1369CrossRef
go back to reference Lew MS, Sebe N, Djeraba C, Jain R (2006) Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimed Comput Commun Appl 2(1):1–19CrossRef Lew MS, Sebe N, Djeraba C, Jain R (2006) Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimed Comput Commun Appl 2(1):1–19CrossRef
go back to reference Li J (2014) Data protection in healthcare social networks. J IEEE Softw 31(1):46–53CrossRef Li J (2014) Data protection in healthcare social networks. J IEEE Softw 31(1):46–53CrossRef
go back to reference Liu Y, Zhang D, Lu G, Ma W-Y (2007) A survey of content based image retrieval with high-level semantics. Pattern Recognit Lett 40(1):262–282CrossRefMATH Liu Y, Zhang D, Lu G, Ma W-Y (2007) A survey of content based image retrieval with high-level semantics. Pattern Recognit Lett 40(1):262–282CrossRefMATH
go back to reference MacArthur SD, Brodley CE, Shyu CR (2000) Relevance feedback decision trees in content-based image retrieval. In: Proceedings of the IEEE work-shop content-based access of image and video libraries, pp 68–72 MacArthur SD, Brodley CE, Shyu CR (2000) Relevance feedback decision trees in content-based image retrieval. In: Proceedings of the IEEE work-shop content-based access of image and video libraries, pp 68–72
go back to reference Manning CD, Raghavan P, Schutze H (2008) Introduction to information retrieval. Cambridge University Press, New YorkCrossRefMATH Manning CD, Raghavan P, Schutze H (2008) Introduction to information retrieval. Cambridge University Press, New YorkCrossRefMATH
go back to reference Messaoudi A, Bouslimi R, Akaichi J (2013) Indexing medical images based on collaborative experts reports. Int J Comput Appl 70(5):1–9 Messaoudi A, Bouslimi R, Akaichi J (2013) Indexing medical images based on collaborative experts reports. Int J Comput Appl 70(5):1–9
go back to reference Mezaris V, Kompatsiaris I, Strintzis MG (2005) An ontology approach to object based image retrieval. In: Proceedings of the international conference on image processing, pp 511–514 Mezaris V, Kompatsiaris I, Strintzis MG (2005) An ontology approach to object based image retrieval. In: Proceedings of the international conference on image processing, pp 511–514
go back to reference Müller H, Rosset A, Garcia A, Vallée JP, Geissbuhler A (2005) Benefits of content-based visual data access in radiology. Radiographics 25(3):849–858CrossRef Müller H, Rosset A, Garcia A, Vallée JP, Geissbuhler A (2005) Benefits of content-based visual data access in radiology. Radiographics 25(3):849–858CrossRef
go back to reference Nandagopalan S, Adiga BS, Deepak N (2008) A universal model for content-based image retrieval. World Acad Sci Eng Technol 46:644–647 Nandagopalan S, Adiga BS, Deepak N (2008) A universal model for content-based image retrieval. World Acad Sci Eng Technol 46:644–647
go back to reference Napel SA, Beaulieu CF, Rodriguez C, Cui J, Xu J, Gupta A et al (2010) Automated retrieval of CT images of liver lesions on the basis of image similarity: method and preliminary results. Radiology 256(1):243–252CrossRef Napel SA, Beaulieu CF, Rodriguez C, Cui J, Xu J, Gupta A et al (2010) Automated retrieval of CT images of liver lesions on the basis of image similarity: method and preliminary results. Radiology 256(1):243–252CrossRef
go back to reference Patil PB, Kokare MB (2011) Relevance feedback in content based image retrieval: a review. J Appli Comput Sci Math 10:41–47 Patil PB, Kokare MB (2011) Relevance feedback in content based image retrieval: a review. J Appli Comput Sci Math 10:41–47
go back to reference Pentland A, Picard RW, Sclaroff S (1996) Photobook: content-based manipulation of image databases. Int J Comput Vis 18:233–254CrossRef Pentland A, Picard RW, Sclaroff S (1996) Photobook: content-based manipulation of image databases. Int J Comput Vis 18:233–254CrossRef
go back to reference Qian X, Tagare HD, Fulbright RK, Long R, Antani S (2010) Optimal embedding for shape indexing in medical image databases. Med Image Anal 14(3):243–254CrossRef Qian X, Tagare HD, Fulbright RK, Long R, Antani S (2010) Optimal embedding for shape indexing in medical image databases. Med Image Anal 14(3):243–254CrossRef
go back to reference Rajakumar K, Muttan S (2013) MRI image retrieval using Wavelet with Mahalanobis distance measurement. J Electr Eng Technol 8(5):1188–1193CrossRef Rajakumar K, Muttan S (2013) MRI image retrieval using Wavelet with Mahalanobis distance measurement. J Electr Eng Technol 8(5):1188–1193CrossRef
go back to reference Ramamurthy B, Chandran KR (2012) Content based medical image retrieval with texture content using gray level co-occurrence matrix and k-means clustering algorithms. J Comput Sci 8(7):1070–1076CrossRef Ramamurthy B, Chandran KR (2012) Content based medical image retrieval with texture content using gray level co-occurrence matrix and k-means clustering algorithms. J Comput Sci 8(7):1070–1076CrossRef
go back to reference Ramamurthy B, Chandran KR, Meenakshi VR, Shilpa V (2012) CBMIR: content based medical image retrieval system using texture and intensity for dental images. In: International conference eco-friendly computing and communication systems, ICECCS, vol 305, pp 125–134 Ramamurthy B, Chandran KR, Meenakshi VR, Shilpa V (2012) CBMIR: content based medical image retrieval system using texture and intensity for dental images. In: International conference eco-friendly computing and communication systems, ICECCS, vol 305, pp 125–134
go back to reference Rocchio JJ (1971) Relevance feedback in information retrieval: SMART retrieval system, 1st edn. Prentice Hall, Upper Saddle River, pp 323–341 Rocchio JJ (1971) Relevance feedback in information retrieval: SMART retrieval system, 1st edn. Prentice Hall, Upper Saddle River, pp 323–341
go back to reference Rui Y, Huang TS, Chang SF (1999) Image retrieval: current techniques, promising directions, and open issues. J Vis Commun Image Represent 10(1):39–62CrossRef Rui Y, Huang TS, Chang SF (1999) Image retrieval: current techniques, promising directions, and open issues. J Vis Commun Image Represent 10(1):39–62CrossRef
go back to reference Selvarani G, Annadurai S (2007) Medical image retrieval by combining low level features and DICOM features. In: International IEEE conference on computational intelligence and multimedia applications, pp 587–589 Selvarani G, Annadurai S (2007) Medical image retrieval by combining low level features and DICOM features. In: International IEEE conference on computational intelligence and multimedia applications, pp 587–589
go back to reference Seng WC, Mirisaee SH (2009) A content-based retrieval system for blood cells images. In: International IEEE conference on future computer and communication, pp 412–415 Seng WC, Mirisaee SH (2009) A content-based retrieval system for blood cells images. In: International IEEE conference on future computer and communication, pp 412–415
go back to reference Shanmugapriya N, Nallusamy R (2014) A new content based image retrieval system using GMM and relevance feedback. J Comput Sci 10(2):330–340CrossRef Shanmugapriya N, Nallusamy R (2014) A new content based image retrieval system using GMM and relevance feedback. J Comput Sci 10(2):330–340CrossRef
go back to reference Shyu CR, Brodley CE, Kak AC, Kosaka A, Aisen AM, Broderick LS (1999) ASSERT: a physician-in-the-loop content-based retrieval system for HRCT image databases. Comput Vision Image Underst 75(1–2):111–132CrossRef Shyu CR, Brodley CE, Kak AC, Kosaka A, Aisen AM, Broderick LS (1999) ASSERT: a physician-in-the-loop content-based retrieval system for HRCT image databases. Comput Vision Image Underst 75(1–2):111–132CrossRef
go back to reference Sidong L, Lei J, Weidong C, Lingfeng W, Eberl S, Fulham MJ, Dagan F (2010) Localized multiscale texture based retrieval of neurological image. In: IEEE 23rd international symposium on computer-based medical systems (CBMS), pp 243–248 Sidong L, Lei J, Weidong C, Lingfeng W, Eberl S, Fulham MJ, Dagan F (2010) Localized multiscale texture based retrieval of neurological image. In: IEEE 23rd international symposium on computer-based medical systems (CBMS), pp 243–248
go back to reference Singh P, Singh S, Kaur G (2009) Efficient techniques used in CBMIR for medical image retrievals. Proc World Acad Sci Eng Technol 38:434–437 Singh P, Singh S, Kaur G (2009) Efficient techniques used in CBMIR for medical image retrievals. Proc World Acad Sci Eng Technol 38:434–437
go back to reference Singh J, Kaleka JS, Sharma R (2012) Different approaches of CBIR techniques. Int J Comput Distributed Syst 1(2):76–78 Singh J, Kaleka JS, Sharma R (2012) Different approaches of CBIR techniques. Int J Comput Distributed Syst 1(2):76–78
go back to reference Smeulders A, Worring M, Santini S, Gupta A, Jain R (2000) Content based image retrieval at the end of the early years. IEEE TransPattern Anal Mach Intell 22(12):1349–1380CrossRef Smeulders A, Worring M, Santini S, Gupta A, Jain R (2000) Content based image retrieval at the end of the early years. IEEE TransPattern Anal Mach Intell 22(12):1349–1380CrossRef
go back to reference Song Y (2012) Image Analysis for Automatic Phenotyping Measurements. Biomathematics and Statistics Scotland (BioSS). Wageningen Song Y (2012) Image Analysis for Automatic Phenotyping Measurements. Biomathematics and Statistics Scotland (BioSS). Wageningen
go back to reference Stojmenovic M, Nayak A (2008) Measuring the related properties of linearity and elongation of point sets. In: 13th Iberoamerican congress on pattern recognition, CIARP 2008. Havana, Cuba, pp 102–111 Stojmenovic M, Nayak A (2008) Measuring the related properties of linearity and elongation of point sets. In: 13th Iberoamerican congress on pattern recognition, CIARP 2008. Havana, Cuba, pp 102–111
go back to reference Stojmenovic M, Jevremovic A, Nayak A (2013) Fast iris detection via shape based circularity. In: 8th IEEE conference on industrial electronics and applications (ICIEA), pp 747–752 Stojmenovic M, Jevremovic A, Nayak A (2013) Fast iris detection via shape based circularity. In: 8th IEEE conference on industrial electronics and applications (ICIEA), pp 747–752
go back to reference Su Z, Zhang H, Li S, Ma S (2003) Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning. IEEE Trans Image Process 12(8):924–936CrossRef Su Z, Zhang H, Li S, Ma S (2003) Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning. IEEE Trans Image Process 12(8):924–936CrossRef
go back to reference Swarnambiga A, Vasuki SM (2013) Distance measures for medical image retrieval. Int J Imaging Syst Technol 23:9–21CrossRef Swarnambiga A, Vasuki SM (2013) Distance measures for medical image retrieval. Int J Imaging Syst Technol 23:9–21CrossRef
go back to reference Tieu K, Viola P (2003) Boosting image retrieval. In: Proceedings of the IEEE conference on computer vision pattern recognition, pp 228–235 Tieu K, Viola P (2003) Boosting image retrieval. In: Proceedings of the IEEE conference on computer vision pattern recognition, pp 228–235
go back to reference Wang M, Hua XS (2011) Active learning in multimedia annotation and retrieval: a survey. ACM Trans Intell Syst Technol 2(2):10–31MathSciNetCrossRef Wang M, Hua XS (2011) Active learning in multimedia annotation and retrieval: a survey. ACM Trans Intell Syst Technol 2(2):10–31MathSciNetCrossRef
go back to reference Wang M, Li H, Tao D, Lu K, Wu X (2012) Multimodal graph-based reranking for web image search. IEEE Trans Image Process 21(11):4649–4661MathSciNetCrossRef Wang M, Li H, Tao D, Lu K, Wu X (2012) Multimodal graph-based reranking for web image search. IEEE Trans Image Process 21(11):4649–4661MathSciNetCrossRef
go back to reference Wang X-Y, Li Y-W, Yang H-Y, Chen J-W (2014) An image retrieval scheme with relevance feedback using feature reconstruction and SVM reclassification. Neurocomputing 127:214–230CrossRef Wang X-Y, Li Y-W, Yang H-Y, Chen J-W (2014) An image retrieval scheme with relevance feedback using feature reconstruction and SVM reclassification. Neurocomputing 127:214–230CrossRef
go back to reference Wu C, Tai X (2009) Application of gray level variation statistic in gastroscopic image retrieval. In: Eighth IEEE/ACIS international conference on computer and information science, pp 342–346 Wu C, Tai X (2009) Application of gray level variation statistic in gastroscopic image retrieval. In: Eighth IEEE/ACIS international conference on computer and information science, pp 342–346
go back to reference Xiang-Yang W, Bei-Bei Z, Hong-Ying Y (2012) Content-based image retrieval by integrating color and texture features. Multimed Tools Appl 68(3):545–569 Xiang-Yang W, Bei-Bei Z, Hong-Ying Y (2012) Content-based image retrieval by integrating color and texture features. Multimed Tools Appl 68(3):545–569
go back to reference Xie Y, Chen Z, Cheng Y, Zhang K, Agrawal A, Liao WK, Choudhary A (2013) Detecting and tracking disease outbreaks by mining social media data. In: Proceedings of the twenty-third international joint conference on artificial intelligence (IJCAI’13) Xie Y, Chen Z, Cheng Y, Zhang K, Agrawal A, Liao WK, Choudhary A (2013) Detecting and tracking disease outbreaks by mining social media data. In: Proceedings of the twenty-third international joint conference on artificial intelligence (IJCAI’13)
go back to reference Xin J, Jin JS (2004) Relevance feedback for content-based image retrieval using Bayesian network. In: Proceedings of the pan-sydney area workshop on visual information processing (VIP ‘05). Australian Computer Society, Inc Darlinghurst Australia, pp 91–94 Xin J, Jin JS (2004) Relevance feedback for content-based image retrieval using Bayesian network. In: Proceedings of the pan-sydney area workshop on visual information processing (VIP ‘05). Australian Computer Society, Inc Darlinghurst Australia, pp 91–94
go back to reference Xu X, Lee DJ, Antani S, Long L (2008) A spine X-ray image retrieval system using partial shape matching. IEEE Trans Inf Technol Biomed 12(1):100–108CrossRef Xu X, Lee DJ, Antani S, Long L (2008) A spine X-ray image retrieval system using partial shape matching. IEEE Trans Inf Technol Biomed 12(1):100–108CrossRef
go back to reference Yogapriya J, Ila V (2013) An integrated framework based on texture features, cuckoo search and relevance vector machine for medical image retrieval system. Am J Appl Sci 10(11):1398–1412CrossRef Yogapriya J, Ila V (2013) An integrated framework based on texture features, cuckoo search and relevance vector machine for medical image retrieval system. Am J Appl Sci 10(11):1398–1412CrossRef
go back to reference Yue J, Li Z, Liu L, Fu Z (2010) Content-based image retrieval using color and texture fused features. Math Comput Model 54:1121–1127CrossRef Yue J, Li Z, Liu L, Fu Z (2010) Content-based image retrieval using color and texture fused features. Math Comput Model 54:1121–1127CrossRef
go back to reference Zeyad SY, Dzulkifli M, Tanzila S, Mohammed HA, Amjad R, Al-R Mznah, Al-D Abdullah (2014) Content-based image retrieval using PSO and k-means clustering algorithm. Arab J Geosci 8(8):6211–6224. doi:10.1007/s12517-014-1584-7 Zeyad SY, Dzulkifli M, Tanzila S, Mohammed HA, Amjad R, Al-R Mznah, Al-D Abdullah (2014) Content-based image retrieval using PSO and k-means clustering algorithm. Arab J Geosci 8(8):6211–6224. doi:10.​1007/​s12517-014-1584-7
go back to reference Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recognit 37(1):1–19CrossRef Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recognit 37(1):1–19CrossRef
go back to reference Zhang J, Ye L (2010) Series feature aggregation for content-based image retrieval. Comput Electr Eng 36(4):691–701CrossRefMATH Zhang J, Ye L (2010) Series feature aggregation for content-based image retrieval. Comput Electr Eng 36(4):691–701CrossRefMATH
go back to reference Zhang G, Ma ZM, He Y, Zhao T (2008) Texture characteristic extraction for dominant directions in content-based medical image retrieval. In: IEEE international conference on biomedical engineering and informatics (BMEI), pp 253–257 Zhang G, Ma ZM, He Y, Zhao T (2008) Texture characteristic extraction for dominant directions in content-based medical image retrieval. In: IEEE international conference on biomedical engineering and informatics (BMEI), pp 253–257
go back to reference Zhang D, Islam MdM, Lu G (2012) A review on automatic image annotation techniques. Pattern Recognit 45:346–362CrossRef Zhang D, Islam MdM, Lu G (2012) A review on automatic image annotation techniques. Pattern Recognit 45:346–362CrossRef
Metadata
Title
A medical image retrieval scheme with relevance feedback through a medical social network
Authors
Mouhamed Gaith Ayadi
Riadh Bouslimi
Jalel Akaichi
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0362-9

Premium Partner