Skip to main content
Top

2016 | OriginalPaper | Chapter

A Mesh-Free Parallel Moving Least-Squares-based Interpolation Method for the Application in Aeroelastic Simulations With the Flow Simulator

Authors : Andreas Schuster, Lars Reimer, Jens Neumann

Published in: New Results in Numerical and Experimental Fluid Mechanics X

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A mesh-free interpolation method for the use in aeroelastic aircraft simulations was implemented. The method is based on a weighted moving least-squares (MLS) approach for solving the spatial coupling problem arising in such problems. The paper presents the fundamentals of the MLS-based method and its advantages over the popular and often-used mesh-free interpolation method of Wendland et al. [1, 2]. Further emphasis is put on the description of the parallel implementation of the MLS-based method. The effectiveness of the method is demonstrated with selected interpolation test cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In the GSB method, the compact support radius \(\delta _j\) entering the RBF (see Eq. 5) has to be the same all over the computational domain. Otherwise, the interpolation scheme will not be consistent.
 
2
The compact support radius \(\delta _j\) associated with \({\mathbf {x}}_{F,j}\) is determined then as the distance of the point that is farthest away from \({\mathbf {x}}_{F,j}\) among the \(N_\delta \) support points.
 
3
The fuselage mesh components which are part of the original HiReTT configuration as defined in [13] were not considered in this paper.
 
4
Estimated figures.
 
Literature
1.
go back to reference Beckert, A., Wendland, H.: Multivariate interpolation for fluid-structure interaction problems using radial basis functions. Aerosp. Sci. Technol. 5(2), 125–134 (2001)CrossRefMATH Beckert, A., Wendland, H.: Multivariate interpolation for fluid-structure interaction problems using radial basis functions. Aerosp. Sci. Technol. 5(2), 125–134 (2001)CrossRefMATH
2.
go back to reference Ahrem, R., Beckert, A., Wendland, H.: A mesh less spatial coupling scheme for large-scale fluid-structure-interaction problems. Comp. Model. Eng. Sci. 12, 121–136 (2006)MATH Ahrem, R., Beckert, A., Wendland, H.: A mesh less spatial coupling scheme for large-scale fluid-structure-interaction problems. Comp. Model. Eng. Sci. 12, 121–136 (2006)MATH
3.
go back to reference Pidaparti, R.M.V.: Structural and aerodynamic data transformation using inverse isoparametric mapping. J. Aircr. 29, 507–509 (1992)CrossRef Pidaparti, R.M.V.: Structural and aerodynamic data transformation using inverse isoparametric mapping. J. Aircr. 29, 507–509 (1992)CrossRef
4.
go back to reference Cebral, J.J., Löhner, R.: Conservative load projection and tracking for fluid-structure problems. AIAA J. 35, 687–692 (1997)CrossRefMATH Cebral, J.J., Löhner, R.: Conservative load projection and tracking for fluid-structure problems. AIAA J. 35, 687–692 (1997)CrossRefMATH
5.
go back to reference Beckert, A.: Coupled fluid (CFD) and structural (FE) models using finite interpolation elements. Aerosp. Sci. Technol. 4(1), 13–22 (2000)CrossRefMATH Beckert, A.: Coupled fluid (CFD) and structural (FE) models using finite interpolation elements. Aerosp. Sci. Technol. 4(1), 13–22 (2000)CrossRefMATH
6.
go back to reference Neumann, J., Krüger, W.: Coupling strategies for large industrial models. In: Kroll, N. et al. (eds.): Computational Flight Testing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 123, pp. 207–222 (2013) Neumann, J., Krüger, W.: Coupling strategies for large industrial models. In: Kroll, N. et al. (eds.): Computational Flight Testing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 123, pp. 207–222 (2013)
7.
go back to reference Stickan, B., Bleecke, H., Schulze, S.: NASTRAN based static CFD-CSM coupling in flowsimulator. In: Kroll, N. et al. (eds.) Computational Flight Testing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 123, pp. 223–234 (2013) Stickan, B., Bleecke, H., Schulze, S.: NASTRAN based static CFD-CSM coupling in flowsimulator. In: Kroll, N. et al. (eds.) Computational Flight Testing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 123, pp. 223–234 (2013)
8.
go back to reference Rendall, T.C.S., Allen, C.B.: Parallel efficient mesh motion using radial basis functions with application to multi-bladed rotors. Int. J. Numer. Meth. Eng. 81, 89–105 (2010)MathSciNetMATH Rendall, T.C.S., Allen, C.B.: Parallel efficient mesh motion using radial basis functions with application to multi-bladed rotors. Int. J. Numer. Meth. Eng. 81, 89–105 (2010)MathSciNetMATH
9.
go back to reference Quaranta, G., Masarati, P., Mantegazza, P.: A conservative mesh-free approach for fluid-structure interface problems. In: Proceedings of the International Conference on Computational Methods of Coupled Problems in Science and Engineering (2005) Quaranta, G., Masarati, P., Mantegazza, P.: A conservative mesh-free approach for fluid-structure interface problems. In: Proceedings of the International Conference on Computational Methods of Coupled Problems in Science and Engineering (2005)
10.
go back to reference Wellmer, G., Reimer, L., Flister, H., Behr, M., Ballmann, J.: A comparison of fluid/structure coupling methods for reduced structural models. In: Eisfeld, B. et al. (eds.): Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 122, pp. 181–218 (2013) Wellmer, G., Reimer, L., Flister, H., Behr, M., Ballmann, J.: A comparison of fluid/structure coupling methods for reduced structural models. In: Eisfeld, B. et al. (eds.): Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 122, pp. 181–218 (2013)
11.
go back to reference Meinel, M., Einarsson, G.O.: The flow simulator framework for massively parallel CFD applications. In: Proceedings of the PARA 2010—State of the Art in Scientific and Parallel Computing (2010) Meinel, M., Einarsson, G.O.: The flow simulator framework for massively parallel CFD applications. In: Proceedings of the PARA 2010—State of the Art in Scientific and Parallel Computing (2010)
12.
go back to reference Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)MathSciNetCrossRefMATH Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)MathSciNetCrossRefMATH
13.
go back to reference Hantrais-Gervois, J.-L., et al.: GARTEUR AD/A-45: Application of CFD to Predict High “g” Loads. Technical report (2013) Hantrais-Gervois, J.-L., et al.: GARTEUR AD/A-45: Application of CFD to Predict High “g” Loads. Technical report (2013)
Metadata
Title
A Mesh-Free Parallel Moving Least-Squares-based Interpolation Method for the Application in Aeroelastic Simulations With the Flow Simulator
Authors
Andreas Schuster
Lars Reimer
Jens Neumann
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-27279-5_50

Premium Partners