Skip to main content
Top
Published in: Journal of Scientific Computing 1/2019

02-04-2019

A Meshless Finite Difference Method Based on Polynomial Interpolation

Authors: X. W. Huang, C. S. Wu

Published in: Journal of Scientific Computing | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The finite difference (FD) formula plays an important role in the meshless methods for the numerical solution of partial differential equations. It can be created by polynomial interpolation, however, this idea has not been widely used due to the complexity of multivariate polynomial interpolation. Instead, radial basis functions interpolation is widely used to generate the FD formula. In this paper, we first propose a simple and practicable node distribution, which makes it convenient for one to choose the interpolation node set that guarantee the unique solvability of multivariate polynomial interpolation. The greatest advantage of the interpolation node set is that we can only face triangular matrix in order to obtain the Lagrange basis polynomials by the constructed basis polynomials. We then use Taylor’s formula to establish error estimates of the FD formula based on polynomial interpolation. We finally give some numerical experiments for the numerical solutions of the Poisson equation and the heat equation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barnett, G.A.: A robust RBF-FD formulation based on polyharmonic splines and polynomials. Ph.D. Thesis, the Department of Applied Mathematics at the University of Colorado, Boulder (2015) Barnett, G.A.: A robust RBF-FD formulation based on polyharmonic splines and polynomials. Ph.D. Thesis, the Department of Applied Mathematics at the University of Colorado, Boulder (2015)
2.
go back to reference Bayona, V., Fornberg, B., Flyer, N., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257–273 (2017)MathSciNetMATHCrossRef Bayona, V., Fornberg, B., Flyer, N., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257–273 (2017)MathSciNetMATHCrossRef
3.
go back to reference Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: RBF-FD formulas and convergence properties. J. Comput. Phys. 229(22), 8281–8295 (2010)MATHCrossRef Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: RBF-FD formulas and convergence properties. J. Comput. Phys. 229(22), 8281–8295 (2010)MATHCrossRef
4.
go back to reference Cao, Y., Dong, J.L., Yao, L.Q.: A modification of the moving least-squares approximation in the element-free Galerkin method. J. Appl. Math. 2014(2), 1–13 (2014)MATH Cao, Y., Dong, J.L., Yao, L.Q.: A modification of the moving least-squares approximation in the element-free Galerkin method. J. Appl. Math. 2014(2), 1–13 (2014)MATH
5.
go back to reference Davydov, O., Dang, T.O.: On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 62(5), 2143–2161 (2011)MathSciNetMATHCrossRef Davydov, O., Dang, T.O.: On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 62(5), 2143–2161 (2011)MathSciNetMATHCrossRef
6.
go back to reference Fasshauer, G.E., Mccourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), 737–762 (2012)MathSciNetMATHCrossRef Fasshauer, G.E., Mccourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), 737–762 (2012)MathSciNetMATHCrossRef
7.
go back to reference Flyer, N., Barnett, G.A., Wicker, L.J.: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations. J. Comput. Phys. 316, 39–62 (2016)MathSciNetMATHCrossRef Flyer, N., Barnett, G.A., Wicker, L.J.: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations. J. Comput. Phys. 316, 39–62 (2016)MathSciNetMATHCrossRef
8.
go back to reference Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)MathSciNetMATHCrossRef Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)MathSciNetMATHCrossRef
9.
go back to reference Fornberg, B., Flyer, N.: Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput. Math. Appl. 69(7), 531–544 (2015)MathSciNetCrossRef Fornberg, B., Flyer, N.: Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput. Math. Appl. 69(7), 531–544 (2015)MathSciNetCrossRef
11.
go back to reference Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)MathSciNetMATHCrossRef Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)MathSciNetMATHCrossRef
12.
go back to reference Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65(4), 627–637 (2013)MathSciNetMATHCrossRef Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65(4), 627–637 (2013)MathSciNetMATHCrossRef
15.
16.
go back to reference Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)MathSciNetMATHCrossRef Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)MathSciNetMATHCrossRef
17.
go back to reference Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013)MathSciNetMATHCrossRef Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013)MathSciNetMATHCrossRef
19.
go back to reference Li, X.: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl. Numer. Math. 99(C), 77–97 (2016)MathSciNetMATHCrossRef Li, X.: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl. Numer. Math. 99(C), 77–97 (2016)MathSciNetMATHCrossRef
20.
go back to reference Li, X., Chen, H., Wang, Y.: Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method. Appl. Math. Comput. 262, 56–78 (2015)MathSciNetMATH Li, X., Chen, H., Wang, Y.: Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method. Appl. Math. Comput. 262, 56–78 (2015)MathSciNetMATH
21.
go back to reference Liang, X.Z., Lü, C.M., Feng, R.Z.: Properly posed sets of nodes for multivariate Lagrange interpolation in \({C}^s\). SIAM J. Numer. Anal. 39(2), 587–595 (2001)MathSciNetMATHCrossRef Liang, X.Z., Lü, C.M., Feng, R.Z.: Properly posed sets of nodes for multivariate Lagrange interpolation in \({C}^s\). SIAM J. Numer. Anal. 39(2), 587–595 (2001)MathSciNetMATHCrossRef
24.
go back to reference Shankar, V.: The overlapped radial basis function-finite difference (RBF-FD) method: a generalization of RBF-FD. J. Comput. Phys. 342, 211–228 (2017)MathSciNetMATHCrossRef Shankar, V.: The overlapped radial basis function-finite difference (RBF-FD) method: a generalization of RBF-FD. J. Comput. Phys. 342, 211–228 (2017)MathSciNetMATHCrossRef
25.
go back to reference Shankar, V., Fogelson, A.L.: Hyperviscosity-based stabilization for radial basis function-finite difference (RBF-FD) discretizations of advection–diffusion equations. J. Comput. Phys. 372, 616–639 (2018)MathSciNetMATHCrossRef Shankar, V., Fogelson, A.L.: Hyperviscosity-based stabilization for radial basis function-finite difference (RBF-FD) discretizations of advection–diffusion equations. J. Comput. Phys. 372, 616–639 (2018)MathSciNetMATHCrossRef
26.
go back to reference Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, London (2000)MATHCrossRef Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, London (2000)MATHCrossRef
27.
go back to reference Shu, C., Yao, Q., Yeo, K.S.: Block-marching in time with DQ discretization: an efficient method for time-dependent problems. Comput. Methods Appl. Mech. Eng. 191(41), 4587–4597 (2002)MATHCrossRef Shu, C., Yao, Q., Yeo, K.S.: Block-marching in time with DQ discretization: an efficient method for time-dependent problems. Comput. Methods Appl. Mech. Eng. 191(41), 4587–4597 (2002)MATHCrossRef
29.
go back to reference Wang, H.Y., Cui, F., Wang, X.H.: Explicit representations for local Lagrangian numerical differentiation. Acta Math. Sin. Engl. Ser. 23(2), 365–372 (2007)MathSciNetMATHCrossRef Wang, H.Y., Cui, F., Wang, X.H.: Explicit representations for local Lagrangian numerical differentiation. Acta Math. Sin. Engl. Ser. 23(2), 365–372 (2007)MathSciNetMATHCrossRef
30.
go back to reference Wang, X.H., Cui, F.: Stable Lagrangian numerical differentiation with the highest order of approximation. Sci. China Ser. A Math. 49(2), 225–232 (2006)MathSciNetMATHCrossRef Wang, X.H., Cui, F.: Stable Lagrangian numerical differentiation with the highest order of approximation. Sci. China Ser. A Math. 49(2), 225–232 (2006)MathSciNetMATHCrossRef
31.
go back to reference Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)MATH Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)MATH
33.
go back to reference Wright, G., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)MathSciNetMATHCrossRef Wright, G., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)MathSciNetMATHCrossRef
Metadata
Title
A Meshless Finite Difference Method Based on Polynomial Interpolation
Authors
X. W. Huang
C. S. Wu
Publication date
02-04-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00952-z

Other articles of this Issue 1/2019

Journal of Scientific Computing 1/2019 Go to the issue

Premium Partner