Skip to main content
Top
Published in: Engineering with Computers 1/2021

10-09-2019 | Original Article

A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel

Authors: M. Hosseininia, M. H. Heydari, J. Rouzegar, C. Cattani

Published in: Engineering with Computers | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the \(\theta \)-weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hundsdorfer W, Verwer JG (2003) Numerical solution of time dependent advection–diffusion–reaction equations. Springer, BerlinMATH Hundsdorfer W, Verwer JG (2003) Numerical solution of time dependent advection–diffusion–reaction equations. Springer, BerlinMATH
2.
go back to reference Kuramoto Y (2003) Chemical oscillations waves and turbulence. Dover, MineolaMATH Kuramoto Y (2003) Chemical oscillations waves and turbulence. Dover, MineolaMATH
3.
go back to reference Murray JD (2003) Mathematical biology. II. Interdisciplinary applied mathematics. Springer, New York Murray JD (2003) Mathematical biology. II. Interdisciplinary applied mathematics. Springer, New York
4.
go back to reference Wilhelmsson H, Lazzaro E (2001) Reaction–diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, Philadelphia Wilhelmsson H, Lazzaro E (2001) Reaction–diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, Philadelphia
5.
go back to reference Atangana A (2016) On the new fractional derivative and application to nonlinear Fishers reaction–diffusion equation. Appl Math Comput 273:948–956MathSciNetMATH Atangana A (2016) On the new fractional derivative and application to nonlinear Fishers reaction–diffusion equation. Appl Math Comput 273:948–956MathSciNetMATH
6.
go back to reference Liu Q, Burrage K, Simpson MJ, Zhenga M, Liub F (2017) Numerical solution of the time fractional reaction–diffusion equation with a moving boundary. J Comput Phys 338:493–510MathSciNet Liu Q, Burrage K, Simpson MJ, Zhenga M, Liub F (2017) Numerical solution of the time fractional reaction–diffusion equation with a moving boundary. J Comput Phys 338:493–510MathSciNet
7.
go back to reference Zhang Z, Xie J (2018) The high-order multistep ADI solver for two-dimensional nonlinear delayed reaction–diffusion equations with variable coefficients. Comput Math Appl 75:3558–3570MathSciNetMATH Zhang Z, Xie J (2018) The high-order multistep ADI solver for two-dimensional nonlinear delayed reaction–diffusion equations with variable coefficients. Comput Math Appl 75:3558–3570MathSciNetMATH
8.
go back to reference Volkov VT, Shishlenin MA, Lukyanenko DV, Grigorev VB (2018) Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data. Comput Math Appl 77:1245–1254MathSciNetMATH Volkov VT, Shishlenin MA, Lukyanenko DV, Grigorev VB (2018) Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data. Comput Math Appl 77:1245–1254MathSciNetMATH
9.
go back to reference Li D, Cheng X, Duan J (2019) A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations. Appl Math Comput 346:452–464MathSciNetMATH Li D, Cheng X, Duan J (2019) A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations. Appl Math Comput 346:452–464MathSciNetMATH
10.
go back to reference Yuste SB, Lindenberg K (2001) Subdiffusion-limited A + A reactions. Phys Rev Lett 87(11):118301 Yuste SB, Lindenberg K (2001) Subdiffusion-limited A + A reactions. Phys Rev Lett 87(11):118301
11.
go back to reference Metzler R, Barkai E, Klafter J (2000) From continuous time random walks to the fractional Fokker–Planck equation. Phys Rev E 61:132–138MathSciNet Metzler R, Barkai E, Klafter J (2000) From continuous time random walks to the fractional Fokker–Planck equation. Phys Rev E 61:132–138MathSciNet
12.
go back to reference Metzler R, Klafter J (2000) Boundary value problems for fractional diffusion equations. J Phys A 278:107–125MathSciNetMATH Metzler R, Klafter J (2000) Boundary value problems for fractional diffusion equations. J Phys A 278:107–125MathSciNetMATH
13.
go back to reference Saichev AI, Zaslavsky GM (1997) Fractional kinetic equations: solutions and applications. Chaos 140:753–764MathSciNetMATH Saichev AI, Zaslavsky GM (1997) Fractional kinetic equations: solutions and applications. Chaos 140:753–764MathSciNetMATH
14.
go back to reference Acedo L, Yuste SB, Lindenberg K (2004) Reaction front in an \( A + B> C \) reaction subdiffusion process. Phys Rev E 69:136–144 Acedo L, Yuste SB, Lindenberg K (2004) Reaction front in an \( A + B> C \) reaction subdiffusion process. Phys Rev E 69:136–144
15.
go back to reference Wheatcraft SW, Benson DA, Meerschaert MM (2000) The fractional-order governing equation of lévy motion. Water Resour Res 36(6):1413–1423 Wheatcraft SW, Benson DA, Meerschaert MM (2000) The fractional-order governing equation of lévy motion. Water Resour Res 36(6):1413–1423
16.
go back to reference Anh V, Liu F, Turner I (2004) Numerical solution of the space fractional Fokker–Planck equation. J Comput Appl Math 166:209–219MathSciNetMATH Anh V, Liu F, Turner I (2004) Numerical solution of the space fractional Fokker–Planck equation. J Comput Appl Math 166:209–219MathSciNetMATH
17.
go back to reference Gorenflo R, Scalas E, Mainardi F (2000) Fractional calculus and continuous-time finance. J Phys A 284:376–384MathSciNet Gorenflo R, Scalas E, Mainardi F (2000) Fractional calculus and continuous-time finance. J Phys A 284:376–384MathSciNet
18.
go back to reference Eiswirth M, Bar M, Gottschalk N, Ertl G (1994) Spiral waves in a surface reaction: model calculations. J Chem Phys 100:1202–1214 Eiswirth M, Bar M, Gottschalk N, Ertl G (1994) Spiral waves in a surface reaction: model calculations. J Chem Phys 100:1202–1214
19.
go back to reference Gupta PK, Das S, Ghosh P (2011) An approximate solution of nonlinear fractional reaction–diffusion equation. Appl Math Model 35:4071–4076MathSciNetMATH Gupta PK, Das S, Ghosh P (2011) An approximate solution of nonlinear fractional reaction–diffusion equation. Appl Math Model 35:4071–4076MathSciNetMATH
20.
go back to reference Pindza E, Owolabi KM (2016) Fourier spectral method for higher order space fractional reaction–diffusion equations. Commun Nonlinear Sci Numer Simul 40:112–128MathSciNetMATH Pindza E, Owolabi KM (2016) Fourier spectral method for higher order space fractional reaction–diffusion equations. Commun Nonlinear Sci Numer Simul 40:112–128MathSciNetMATH
21.
go back to reference Mei L, Guo Sh, Li Y (2017) An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction–diffusion-wave equation. Comput Math Appl 74:2449–2465MathSciNetMATH Mei L, Guo Sh, Li Y (2017) An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction–diffusion-wave equation. Comput Math Appl 74:2449–2465MathSciNetMATH
22.
go back to reference Abdelfatah B, Taki-Eddine O (2017) A priori estimates for weak solution for a time-fractional nonlinear reaction–diffusion equations with an integral condition. Chaos Solitons Fractals 103:79–89MathSciNetMATH Abdelfatah B, Taki-Eddine O (2017) A priori estimates for weak solution for a time-fractional nonlinear reaction–diffusion equations with an integral condition. Chaos Solitons Fractals 103:79–89MathSciNetMATH
23.
go back to reference Chen X, Li L, Zhou B, Wang Z (2018) Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay. Appl Math Comput 337:144–152MathSciNetMATH Chen X, Li L, Zhou B, Wang Z (2018) Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay. Appl Math Comput 337:144–152MathSciNetMATH
24.
go back to reference Khaliq AQM, Alzahrani SS (2019) High-order time stepping Fourier spectral method for multi-dimensional space-fractional reaction–diffusion equations. Comput Math Appl 77:615–630MathSciNetMATH Khaliq AQM, Alzahrani SS (2019) High-order time stepping Fourier spectral method for multi-dimensional space-fractional reaction–diffusion equations. Comput Math Appl 77:615–630MathSciNetMATH
25.
go back to reference Baleanu D, Sun H, Hajipour M, Jajarmi A (2019) On an accurate discretization of a variable-order fractional reaction–diffusion equation. Commun Nonlinear Sci Numer Simul 69:119–133MathSciNetMATH Baleanu D, Sun H, Hajipour M, Jajarmi A (2019) On an accurate discretization of a variable-order fractional reaction–diffusion equation. Commun Nonlinear Sci Numer Simul 69:119–133MathSciNetMATH
26.
go back to reference Samko SG, Ross B (1993) Integration and differentiation to a variable fractional order. Integral Transforms Special Function 1:277–300MathSciNetMATH Samko SG, Ross B (1993) Integration and differentiation to a variable fractional order. Integral Transforms Special Function 1:277–300MathSciNetMATH
27.
go back to reference Ramirez LES, Coimbra CFM (2011) On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys D 240:1111–1118MathSciNetMATH Ramirez LES, Coimbra CFM (2011) On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys D 240:1111–1118MathSciNetMATH
28.
go back to reference Sun HG, Chen W, Wei H, Chen YQ (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Special Top 193:185–192 Sun HG, Chen W, Wei H, Chen YQ (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Special Top 193:185–192
29.
go back to reference Shyu JJ, Pei SC, Chan CH (2009) An iterative method for the design of variable fractional-order FIR differintegrators. Signal Process 89:320–327MATH Shyu JJ, Pei SC, Chan CH (2009) An iterative method for the design of variable fractional-order FIR differintegrators. Signal Process 89:320–327MATH
30.
31.
go back to reference Lin R, Liu F, Anh V, Turner I (2009) Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl Math Comput 212:435–445MathSciNetMATH Lin R, Liu F, Anh V, Turner I (2009) Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl Math Comput 212:435–445MathSciNetMATH
32.
go back to reference Atangana A, Gómez-Aguilar JF (2018) Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur Phys J Plus 133:166 Atangana A, Gómez-Aguilar JF (2018) Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur Phys J Plus 133:166
33.
go back to reference Atangana A (2018) Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys A 505:688–706MathSciNet Atangana A (2018) Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys A 505:688–706MathSciNet
34.
go back to reference Atangana A (2018) Blind in a commutative world: simple illustrations with functions and chaotic attractors. Chaos Solitons Fractals 114:347–363MathSciNetMATH Atangana A (2018) Blind in a commutative world: simple illustrations with functions and chaotic attractors. Chaos Solitons Fractals 114:347–363MathSciNetMATH
35.
go back to reference Atangana A, Gómez-Aguilar JF (2018) Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114:516–535MathSciNetMATH Atangana A, Gómez-Aguilar JF (2018) Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114:516–535MathSciNetMATH
36.
go back to reference Bhrawy AH, Zaky MA (2016) Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80(1):101–116MathSciNetMATH Bhrawy AH, Zaky MA (2016) Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80(1):101–116MathSciNetMATH
37.
go back to reference Zayernouri M, Karniadakis GE (2015) Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J Comput Phys 80(1):312–338MathSciNetMATH Zayernouri M, Karniadakis GE (2015) Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J Comput Phys 80(1):312–338MathSciNetMATH
38.
go back to reference Li XY, Wu BY (2015) A numerical technique for variable fractional functional boundary value problems. Appl Math Lett 43:108–113MathSciNetMATH Li XY, Wu BY (2015) A numerical technique for variable fractional functional boundary value problems. Appl Math Lett 43:108–113MathSciNetMATH
39.
go back to reference Abdelkawy MA, Zaky MA, Bhrawy AH, Baleanu D (2015) Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model. Rom Rep Phys 67:773–791 Abdelkawy MA, Zaky MA, Bhrawy AH, Baleanu D (2015) Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model. Rom Rep Phys 67:773–791
40.
go back to reference Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85(3):1815–1823MathSciNetMATH Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85(3):1815–1823MathSciNetMATH
41.
go back to reference Hosseininia M, Heydari MH (2019) Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel. Chaos Solitons Fractals 127:389–399MathSciNetMATH Hosseininia M, Heydari MH (2019) Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel. Chaos Solitons Fractals 127:389–399MathSciNetMATH
42.
go back to reference Hosseininia M, Heydari MH (2019) Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag–Leffler non-singular kernel. Chaos Solitons Fractals 127:400–407MathSciNetMATH Hosseininia M, Heydari MH (2019) Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag–Leffler non-singular kernel. Chaos Solitons Fractals 127:400–407MathSciNetMATH
43.
go back to reference Heydari MH, Hooshmandasl MR, Cattani C, Hariharan G (2017) An optimization wavelet method for multi variable-order fractional differential equations. Fundam Inform 153(3–4):173–198MathSciNetMATH Heydari MH, Hooshmandasl MR, Cattani C, Hariharan G (2017) An optimization wavelet method for multi variable-order fractional differential equations. Fundam Inform 153(3–4):173–198MathSciNetMATH
44.
go back to reference Heydari MH, Avazzadeh Z, Haromi MF (2019) A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Appl Math Comput 341:215–228MathSciNetMATH Heydari MH, Avazzadeh Z, Haromi MF (2019) A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Appl Math Comput 341:215–228MathSciNetMATH
45.
go back to reference Heydari MH, Avazzadeh Z, Yang Y (2019) A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl Math Comput 352:235–248MathSciNetMATH Heydari MH, Avazzadeh Z, Yang Y (2019) A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl Math Comput 352:235–248MathSciNetMATH
46.
go back to reference Heydari MH, Avazzadeh Z (2018) Legendre wavelets optimization method for variable-order fractional Poisson equation. Chaos Solitons Fractals 112:180–190MathSciNetMATH Heydari MH, Avazzadeh Z (2018) Legendre wavelets optimization method for variable-order fractional Poisson equation. Chaos Solitons Fractals 112:180–190MathSciNetMATH
47.
go back to reference Heydari MH, Avazzadeh Z (2018) An operational matrix method for solving variable-order fractional biharmonic equation. Comput Appl Math 37(4):4397–4411MathSciNetMATH Heydari MH, Avazzadeh Z (2018) An operational matrix method for solving variable-order fractional biharmonic equation. Comput Appl Math 37(4):4397–4411MathSciNetMATH
48.
go back to reference Heydari MH, Avazzadeh Z (2018) A new wavelet method for variable-order fractional optimal control problems. Asian J Control 20(5):1–14MathSciNetMATH Heydari MH, Avazzadeh Z (2018) A new wavelet method for variable-order fractional optimal control problems. Asian J Control 20(5):1–14MathSciNetMATH
49.
go back to reference Heydari MH (2018) A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems. J Frankl Inst 355:4970–4995MathSciNetMATH Heydari MH (2018) A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems. J Frankl Inst 355:4970–4995MathSciNetMATH
50.
go back to reference Hosseininia M, Heydari MH, Ghaini FMM, Avazzadeh Z (2018) Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection–diffusion equation with variable coefficients. Int J Nonlinear Sci Numer Simul 19(7–8):793–802MathSciNetMATH Hosseininia M, Heydari MH, Ghaini FMM, Avazzadeh Z (2018) Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection–diffusion equation with variable coefficients. Int J Nonlinear Sci Numer Simul 19(7–8):793–802MathSciNetMATH
51.
go back to reference Tayebi A, Shekari Y, Heydari MH (2017) A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation. J Comput Phys 340(1):655–669MathSciNetMATH Tayebi A, Shekari Y, Heydari MH (2017) A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation. J Comput Phys 340(1):655–669MathSciNetMATH
52.
go back to reference Levin D (1998) The approximation power of moving least-squares. Math Comput Am Math Soc 67(224):1517–1531MathSciNetMATH Levin D (1998) The approximation power of moving least-squares. Math Comput Am Math Soc 67(224):1517–1531MathSciNetMATH
53.
go back to reference Cohen-Or D, Fleishman S, Levin D, Alexa M, Behr J, Silva CT (2003) Computing and rendering point set surfaces. IEEE Trans Vis Comput Graph 9(1):3–15 Cohen-Or D, Fleishman S, Levin D, Alexa M, Behr J, Silva CT (2003) Computing and rendering point set surfaces. IEEE Trans Vis Comput Graph 9(1):3–15
54.
go back to reference Mirzaei D (2016) A greedy meshless local Petrov–Galerkin method based on radial basis functions. Numer Methods Partial Differ Equ 32(3):847–861MathSciNetMATH Mirzaei D (2016) A greedy meshless local Petrov–Galerkin method based on radial basis functions. Numer Methods Partial Differ Equ 32(3):847–861MathSciNetMATH
55.
go back to reference Dehghan M, Abbaszadeh M (2017) Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems. Comput Methods Appl Mech Eng 328:775–803MathSciNetMATH Dehghan M, Abbaszadeh M (2017) Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems. Comput Methods Appl Mech Eng 328:775–803MathSciNetMATH
56.
go back to reference Mardani A, Hooshmandasl MR, Hosseini MM, Heydari MH (2017) Moving least squares (MLS) method for the nonlinear hyperbolic telegraph equation with variable coefficients. Int J Comput Methods 14(3):1750026MathSciNetMATH Mardani A, Hooshmandasl MR, Hosseini MM, Heydari MH (2017) Moving least squares (MLS) method for the nonlinear hyperbolic telegraph equation with variable coefficients. Int J Comput Methods 14(3):1750026MathSciNetMATH
57.
go back to reference Matinfar M, Pourabd M (2018) Modified moving least squares method for two-dimensional linear and nonlinear systems of integral equations. Comput Appl Math 37:5857–5875MathSciNetMATH Matinfar M, Pourabd M (2018) Modified moving least squares method for two-dimensional linear and nonlinear systems of integral equations. Comput Appl Math 37:5857–5875MathSciNetMATH
58.
go back to reference Turner I, Zhuang P, Gu YT, Yarlagadda PKDV (2011) Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int J Numer Methods Eng 88:1346–1362MathSciNetMATH Turner I, Zhuang P, Gu YT, Yarlagadda PKDV (2011) Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int J Numer Methods Eng 88:1346–1362MathSciNetMATH
59.
go back to reference Shekari Y, Tayebi A, Heydari MH (2019) A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation. Comput Methods Appl Mech Eng 350:154–168MathSciNetMATH Shekari Y, Tayebi A, Heydari MH (2019) A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation. Comput Methods Appl Mech Eng 350:154–168MathSciNetMATH
60.
go back to reference Pandey RK, Yadav S, Shukla AK (2019) Numerical approximations of Atangana–Baleanu Caputo derivative and its application. Chaos Solitons Fractals 118:58–64MathSciNetMATH Pandey RK, Yadav S, Shukla AK (2019) Numerical approximations of Atangana–Baleanu Caputo derivative and its application. Chaos Solitons Fractals 118:58–64MathSciNetMATH
61.
go back to reference Feng Zh (2007) Traveling waves to a reaction–diffusion equation. Discrete Contin Dyn Syst Suppl 382–390 Feng Zh (2007) Traveling waves to a reaction–diffusion equation. Discrete Contin Dyn Syst Suppl 382–390
62.
go back to reference Hasegawa A (1989) Optical solitons in fibers. Springer, Berlin Hasegawa A (1989) Optical solitons in fibers. Springer, Berlin
63.
go back to reference Fries TP, Matthies HG (2003) Classification and overview of meshfree methods. Department of Mathematics and Computer Science, Technical University of Braunschweig, BrunswickMATH Fries TP, Matthies HG (2003) Classification and overview of meshfree methods. Department of Mathematics and Computer Science, Technical University of Braunschweig, BrunswickMATH
64.
go back to reference Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406MATH Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406MATH
65.
go back to reference Wangb W, Li D, Zhang C, Zhang Y (2011) Implicit–explicit predictor–corrector schemes for nonlinear parabolic differential equations. Appl Math Model 35:2711–2722MathSciNetMATH Wangb W, Li D, Zhang C, Zhang Y (2011) Implicit–explicit predictor–corrector schemes for nonlinear parabolic differential equations. Appl Math Model 35:2711–2722MathSciNetMATH
66.
go back to reference Maslov VP, Danilov VG, Volosov KA (1995) Mathematical modelling of heat and mass transfer processes. Springer, NetherlandsMATH Maslov VP, Danilov VG, Volosov KA (1995) Mathematical modelling of heat and mass transfer processes. Springer, NetherlandsMATH
67.
go back to reference Li D, Wu F, Cheng X, Duan J (2018) A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction–diffusion equations. Comput Math Appl 75:2835–2850MathSciNetMATH Li D, Wu F, Cheng X, Duan J (2018) A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction–diffusion equations. Comput Math Appl 75:2835–2850MathSciNetMATH
Metadata
Title
A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel
Authors
M. Hosseininia
M. H. Heydari
J. Rouzegar
C. Cattani
Publication date
10-09-2019
Publisher
Springer London
Published in
Engineering with Computers / Issue 1/2021
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00852-8

Other articles of this Issue 1/2021

Engineering with Computers 1/2021 Go to the issue