Skip to main content
Top
Published in: Metallography, Microstructure, and Analysis 2/2018

12-03-2018 | Review

A Metallographic Review of 3D Printing/Additive Manufacturing of Metal and Alloy Products and Components

Author: L. E. Murr

Published in: Metallography, Microstructure, and Analysis | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Applications and examples of light and electron micrographs illustrating microstructures, which describe metallurgical phenomena in 3D printing/additive manufacturing of metal and alloy products and components, are presented along with extensive process and processing parameter descriptions and review. Examples include microstructures that have defined turbine blade fabrication and optimization over the past half century, including contemporary electron beam melting fabrication of turbine blade alloys and other novel microstructures and architectures, which result from layer by layer, non-equilibrium melt solidification and epitaxial growth involving powder bed laser and electron beam fabrication. Phase transformations and second-phase formation by rapid cooling in metal and alloy components fabricated by laser and electron beam melting technologies are illustrated for a range of high-temperature materials. Using a range of examples, the advantages of fabricating complex (especially porous) biomedical and related commercial products are described. Prospects for future developments of direct 3D metal and alloy droplet printing, as a key component of the digital factory of the future, are described. This technology is compared with more conventional solidification and powder bed layer building thermo-kinetics, especially in the context of large structure and component fabrication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef
2.
go back to reference S. Mellor, L. Hao, D. Zhang, Additive manufacturing: a framework for implementation. Int. J. Prod. Econ. 149, 194–201 (2014)CrossRef S. Mellor, L. Hao, D. Zhang, Additive manufacturing: a framework for implementation. Int. J. Prod. Econ. 149, 194–201 (2014)CrossRef
3.
go back to reference Y. Zhai, D.A. Lados, J.I. Lagoy, Additive manufacturing: making imagination the major limitation. JOM 6, 808–816 (2014)CrossRef Y. Zhai, D.A. Lados, J.I. Lagoy, Additive manufacturing: making imagination the major limitation. JOM 6, 808–816 (2014)CrossRef
4.
go back to reference W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)CrossRef W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)CrossRef
5.
go back to reference D. Ding, Z. Pan, D. Caluri, H. Li, Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Adv. Manuf. Technol. 81(1), 465–481 (2015)CrossRef D. Ding, Z. Pan, D. Caluri, H. Li, Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Adv. Manuf. Technol. 81(1), 465–481 (2015)CrossRef
6.
go back to reference C. Klahn, B. Leutenecker, M. Mebold, Design strategies for the process of additive manufacturing. Procedia CIRP 36, 230–235 (2015)CrossRef C. Klahn, B. Leutenecker, M. Mebold, Design strategies for the process of additive manufacturing. Procedia CIRP 36, 230–235 (2015)CrossRef
7.
go back to reference E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure and properties. Prog. Mater Sci. 74, 401–477 (2015)CrossRef E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure and properties. Prog. Mater Sci. 74, 401–477 (2015)CrossRef
8.
go back to reference S. Das, D.C. Dowrell, S.S. Babu, Metallic materials for 3D printing. MRS Bull. 41(10), 729–741 (2016)CrossRef S. Das, D.C. Dowrell, S.S. Babu, Metallic materials for 3D printing. MRS Bull. 41(10), 729–741 (2016)CrossRef
9.
go back to reference D.C. Bourell, Perspectives on additive manufacturing. Ann. Rev. Mater. Res. 46, 1–18 (2016)CrossRef D.C. Bourell, Perspectives on additive manufacturing. Ann. Rev. Mater. Res. 46, 1–18 (2016)CrossRef
10.
go back to reference L.E. Murr, S.J. Li, Electron beam manufacturing of high-temperature metals. MRS Bull. 41, 752–757 (2016)CrossRef L.E. Murr, S.J. Li, Electron beam manufacturing of high-temperature metals. MRS Bull. 41, 752–757 (2016)CrossRef
11.
go back to reference L.E. Murr, Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J. Mater. Sci. Technol. 32, 987–995 (2016)CrossRef L.E. Murr, Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J. Mater. Sci. Technol. 32, 987–995 (2016)CrossRef
12.
go back to reference S. Ford, M. Despeisse, Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016)CrossRef S. Ford, M. Despeisse, Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016)CrossRef
13.
go back to reference D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)CrossRef D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)CrossRef
14.
go back to reference W.J. Sames, F.A. List, S. Pannela, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016)CrossRef W.J. Sames, F.A. List, S. Pannela, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016)CrossRef
15.
go back to reference A. Thomson, D. McNally, I. Maskery, R.M. Leach, X-ray computed tomography and additive manufacturing in medicine: a review. Int. J. Metrol. Qual. Eng. 8, 17–42 (2017)CrossRef A. Thomson, D. McNally, I. Maskery, R.M. Leach, X-ray computed tomography and additive manufacturing in medicine: a review. Int. J. Metrol. Qual. Eng. 8, 17–42 (2017)CrossRef
16.
go back to reference A.B. Badiru, V.V. Valencia, D. Liu (eds.), Additive manufacturing handbook: product development for the defense industry (CRC Press/Taylor & Francis Group, Boca Raton, 2017) A.B. Badiru, V.V. Valencia, D. Liu (eds.), Additive manufacturing handbook: product development for the defense industry (CRC Press/Taylor & Francis Group, Boca Raton, 2017)
17.
go back to reference N.T. Abonlkhair, N.M. Everitt, I. Maskery, I. Ashcroft, Selective laser melting of aluminum alloys. MRS Bull. 42(4), 311–319 (2017)CrossRef N.T. Abonlkhair, N.M. Everitt, I. Maskery, I. Ashcroft, Selective laser melting of aluminum alloys. MRS Bull. 42(4), 311–319 (2017)CrossRef
18.
go back to reference C. Wen (ed.), Metallic Foam Bone (Woodhead Publishing/Elsevier, Duxford, 2017) C. Wen (ed.), Metallic Foam Bone (Woodhead Publishing/Elsevier, Duxford, 2017)
19.
go back to reference L.E. Murr, W.L. Johnson, 3D metal droplet printing development and advanced materials additive manufacturing. J. Mater. Res. Technol. 6(1), 77–89 (2017)CrossRef L.E. Murr, W.L. Johnson, 3D metal droplet printing development and advanced materials additive manufacturing. J. Mater. Res. Technol. 6(1), 77–89 (2017)CrossRef
20.
go back to reference T. Wohlers, T. Caffrey, Additive MANUFACTURING: THE state of the industry. Adv. Manuf. Org (Soc. Manuf. Eng. Magazine), May, 45–52 (2016) T. Wohlers, T. Caffrey, Additive MANUFACTURING: THE state of the industry. Adv. Manuf. Org (Soc. Manuf. Eng. Magazine), May, 45–52 (2016)
21.
go back to reference L.E. Murr, Metallurgy of additive manufacturing: examples from electron beam melting. Add. Manuf. 5, 40–53 (2015) L.E. Murr, Metallurgy of additive manufacturing: examples from electron beam melting. Add. Manuf. 5, 40–53 (2015)
22.
go back to reference L E. Murr, Handbook of Materials Structures, Properties, Processing and Performance Vols. 1 & 2, Springer, Heidelberg (2015) L E. Murr, Handbook of Materials Structures, Properties, Processing and Performance Vols. 1 & 2, Springer, Heidelberg (2015)
23.
go back to reference L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, Contributions of light microscopy to contemporary materials characterization: The new directional solidification. Metallog. Microstruct. Anal. 1, 45–55 (2012)CrossRef L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, Contributions of light microscopy to contemporary materials characterization: The new directional solidification. Metallog. Microstruct. Anal. 1, 45–55 (2012)CrossRef
24.
go back to reference M. Orme, E. P. Muntz, Method and apparatus for droplet steam manufacturing. U.S. Patent Publication No. US5226948A; publication date: July 13, (1990) M. Orme, E. P. Muntz, Method and apparatus for droplet steam manufacturing. U.S. Patent Publication No. US5226948A; publication date: July 13, (1990)
25.
go back to reference W. A. Harkness, J. H. Goldschmid, Free-form spatial 3D printing using part levitation. U.S. patent publication No. US2016/0031156Al, published Feb. 4, (2016) W. A. Harkness, J. H. Goldschmid, Free-form spatial 3D printing using part levitation. U.S. patent publication No. US2016/0031156Al, published Feb. 4, (2016)
26.
go back to reference W.L. Johnson, L.E. Murr, M. Halpin, P. Frantz, Additive manufacturing systems and methods. U.S. Provisional Patent Application No. 62308821, March 15, (2016) W.L. Johnson, L.E. Murr, M. Halpin, P. Frantz, Additive manufacturing systems and methods. U.S. Provisional Patent Application No. 62308821, March 15, (2016)
27.
go back to reference G.F. Deyer, D. Deyer, Surface phenomena in fusion welding processes (CRC Press/Taylor & Francis Group, London, 2005) G.F. Deyer, D. Deyer, Surface phenomena in fusion welding processes (CRC Press/Taylor & Francis Group, London, 2005)
28.
go back to reference H. Shultz, Electron beam welding (Woodhead Publishing/The Welding Institute, Cambridge, 1993) H. Shultz, Electron beam welding (Woodhead Publishing/The Welding Institute, Cambridge, 1993)
29.
go back to reference J.W. Hill, M.J. Lee, I.J. Spalding, Surface treatments by laser. Optical Laser Technol. 6(6), 276–278 (1974)CrossRef J.W. Hill, M.J. Lee, I.J. Spalding, Surface treatments by laser. Optical Laser Technol. 6(6), 276–278 (1974)CrossRef
31.
go back to reference A.J. Herbert, Solid object generation. J. Appl. Photo. Eng. 8(4), 185–188 (1982) A.J. Herbert, Solid object generation. J. Appl. Photo. Eng. 8(4), 185–188 (1982)
32.
go back to reference S. Ashley, Rapid prototyping systems. Mech. Eng. 113(4), 34–43 (1991) S. Ashley, Rapid prototyping systems. Mech. Eng. 113(4), 34–43 (1991)
33.
go back to reference D.C. Bourell, J.J. Beaman, Chronology and current processes for freeform fabrication. J. Jpn. Soc. Powder Metal. 50(11), 981–991 (2003)CrossRef D.C. Bourell, J.J. Beaman, Chronology and current processes for freeform fabrication. J. Jpn. Soc. Powder Metal. 50(11), 981–991 (2003)CrossRef
34.
go back to reference D.M. Keicher, J.E. Smugeresky, J.A. Romero, M.L. Griffith, L.D. Harwell, Using laser engineered net shaping (LENS) process to produce complex components from a CAD solid model. Proc. SPIE 2293, 91–97 (1997)CrossRef D.M. Keicher, J.E. Smugeresky, J.A. Romero, M.L. Griffith, L.D. Harwell, Using laser engineered net shaping (LENS) process to produce complex components from a CAD solid model. Proc. SPIE 2293, 91–97 (1997)CrossRef
35.
go back to reference W. Hofmeister, M. Griffith, Solidification in direct metal deposition by LENS processing. JOM 53(9), 30–34 (2001)CrossRef W. Hofmeister, M. Griffith, Solidification in direct metal deposition by LENS processing. JOM 53(9), 30–34 (2001)CrossRef
36.
go back to reference P. Ding, Z. Pan, D. Caluri, H. Li, Wire-feed additive developments and future interests. Int. J. Adv. Manuf. Technol. 81(1), 465–480 (2015)CrossRef P. Ding, Z. Pan, D. Caluri, H. Li, Wire-feed additive developments and future interests. Int. J. Adv. Manuf. Technol. 81(1), 465–480 (2015)CrossRef
37.
go back to reference A. Basak, R. Acharya, S. Das, Additive manufacturing of single-crystal Superalloy CMSX-4 through scanning laser epitaxy: computational, modeling experimental process development and process parameter optimization. Metall. Mater. Trans. A 47(8), 3845–3859 (2016)CrossRef A. Basak, R. Acharya, S. Das, Additive manufacturing of single-crystal Superalloy CMSX-4 through scanning laser epitaxy: computational, modeling experimental process development and process parameter optimization. Metall. Mater. Trans. A 47(8), 3845–3859 (2016)CrossRef
38.
go back to reference A. Basak, S. Das, Epitaxy and microstructure evolution in metal additive manufacturing. Ann. Rev. Mater. Res. 46, 125–149 (2016)CrossRef A. Basak, S. Das, Epitaxy and microstructure evolution in metal additive manufacturing. Ann. Rev. Mater. Res. 46, 125–149 (2016)CrossRef
39.
go back to reference S. Meteyer, X. Xu, N. Perry, Y.F. Zhao, Energy and material flow analysis of binder-jetting additive manufacturing processes. Proc. CIRP 15, 19–25 (2014)CrossRef S. Meteyer, X. Xu, N. Perry, Y.F. Zhao, Energy and material flow analysis of binder-jetting additive manufacturing processes. Proc. CIRP 15, 19–25 (2014)CrossRef
40.
go back to reference T. Wohlers, T. Garnet, History of additive manufacturing. Wohlers Report (Wohlers Associates Co, Fort Collins, 2014) T. Wohlers, T. Garnet, History of additive manufacturing. Wohlers Report (Wohlers Associates Co, Fort Collins, 2014)
41.
go back to reference H.E. Cline, T.R. Anthony, Heat treating and melting material with a scanning laser beam or electron beam. J. Appl. Phys. 49, 3895–3900 (1997) H.E. Cline, T.R. Anthony, Heat treating and melting material with a scanning laser beam or electron beam. J. Appl. Phys. 49, 3895–3900 (1997)
42.
go back to reference R. Frigola, O.A. Harrysson, T.J. Horn, H.A. West, R.L. Aman, J.M. Rigsbee, D.A. Ramirez, L.E. Murr, F. Medina, R.B. Wicker, E. Rodriguez, Fabricating copper components with electron beam melting. Adv. Mater. Processes July, 20–24, (2014) R. Frigola, O.A. Harrysson, T.J. Horn, H.A. West, R.L. Aman, J.M. Rigsbee, D.A. Ramirez, L.E. Murr, F. Medina, R.B. Wicker, E. Rodriguez, Fabricating copper components with electron beam melting. Adv. Mater. Processes July, 20–24, (2014)
43.
go back to reference L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, Microstructures and properties of 17-4 pH stainless steel fabricated by selective laser melting. J. Mater. Res. Technol. 1(3), 167–177 (2012)CrossRef L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, Microstructures and properties of 17-4 pH stainless steel fabricated by selective laser melting. J. Mater. Res. Technol. 1(3), 167–177 (2012)CrossRef
44.
go back to reference S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker, Advanced metal powder based manufacturing of complex components by electron beam melting. Mater. Technol. 24(3), 180–190 (2009)CrossRef S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker, Advanced metal powder based manufacturing of complex components by electron beam melting. Mater. Technol. 24(3), 180–190 (2009)CrossRef
45.
go back to reference J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56, 730–759 (2007)CrossRef J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56, 730–759 (2007)CrossRef
46.
go back to reference N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10 Mg alloy: process optimization and mechanical properties development. Mater. Dev. 65, 417–424 (2015)CrossRef N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10 Mg alloy: process optimization and mechanical properties development. Mater. Dev. 65, 417–424 (2015)CrossRef
47.
go back to reference T.D. Bennett, D.J. Krajnovich, C.P. Grigorspoulos, P. Baumgart, A.C. Tam, Marangori Mechanism in pulsed laser texturing of magnetic hand discs. J. Heat Transfer 119(3), 589–596 (1997)CrossRef T.D. Bennett, D.J. Krajnovich, C.P. Grigorspoulos, P. Baumgart, A.C. Tam, Marangori Mechanism in pulsed laser texturing of magnetic hand discs. J. Heat Transfer 119(3), 589–596 (1997)CrossRef
48.
go back to reference Y. Han, W. Lu, T. Jarvis, J. Shurrinton, X. Wu, Investigation on other microstructure of direct laser additive manufacturing of Ti–6Al–4V alloy. Mater. Res. 18(1), 8 pp (2015) Y. Han, W. Lu, T. Jarvis, J. Shurrinton, X. Wu, Investigation on other microstructure of direct laser additive manufacturing of Ti–6Al–4V alloy. Mater. Res. 18(1), 8 pp (2015)
49.
go back to reference I. Yadroitsev, P. Bertrand, I. Smurov, Parametric analysis of the selective laser melting process. Appl. Surface Sci. 253(19), 8064–8069 (2007)CrossRef I. Yadroitsev, P. Bertrand, I. Smurov, Parametric analysis of the selective laser melting process. Appl. Surface Sci. 253(19), 8064–8069 (2007)CrossRef
50.
go back to reference C.L. Qiu, G.A. Ravi, C. Danu, A. Ranson, S. Dilworth, M.M. Attallah, Fabrication of large Ti–6Al–4V structures by direct laser deposition. J. Alloys Compounds 629, 351–361 (2015)CrossRef C.L. Qiu, G.A. Ravi, C. Danu, A. Ranson, S. Dilworth, M.M. Attallah, Fabrication of large Ti–6Al–4V structures by direct laser deposition. J. Alloys Compounds 629, 351–361 (2015)CrossRef
51.
go back to reference M. Yan, P. Yu, An overview of densification, microstructure and mechanical property of additive manufactured Ti–6Al–4V-comparison among selective laser melting, electron beam melting and laser metal deposition and selective laser sintering with conventional powder. Chap. 5, in Sintering Techniques of Materials, ed. by A. Lakshmanan (Rijeka, Croatia, Intech, 2015), pp. 77–106 M. Yan, P. Yu, An overview of densification, microstructure and mechanical property of additive manufactured Ti–6Al–4V-comparison among selective laser melting, electron beam melting and laser metal deposition and selective laser sintering with conventional powder. Chap. 5, in Sintering Techniques of Materials, ed. by A. Lakshmanan (Rijeka, Croatia, Intech, 2015), pp. 77–106
52.
go back to reference F. Medina, L.E. Murr, R.W. Wicker, S.M. Gaytan, Reticulated mesh arrays and dissimilar array monoliths by additive layered manufacturing using electron and laser beam melting, U.S. Patent filed May 10, 2010 (publication U.S. 2010/0291401A1; Nov. 18, 2010. Patent No. US 8,828,311B2, Sept. 9, (2014) F. Medina, L.E. Murr, R.W. Wicker, S.M. Gaytan, Reticulated mesh arrays and dissimilar array monoliths by additive layered manufacturing using electron and laser beam melting, U.S. Patent filed May 10, 2010 (publication U.S. 2010/0291401A1; Nov. 18, 2010. Patent No. US 8,828,311B2, Sept. 9, (2014)
53.
go back to reference D. A. Bales, A. Klucha, G.M. Dolansky, Uber-cooled turbine section component made by additive manufacturing. U.S. Patent Application No. US 20140169981A1, June 14, (2014) D. A. Bales, A. Klucha, G.M. Dolansky, Uber-cooled turbine section component made by additive manufacturing. U.S. Patent Application No. US 20140169981A1, June 14, (2014)
54.
go back to reference G. Das, L. Cerratescu, D.M. Shah, Method for preparation of a Superalloy having a crystallographic texture controlled microstructure by electron beam melting. U.S. Patent Publication No. EP3015706A2—Sept. 14, 2016; filing date Oct. 28, (2014) G. Das, L. Cerratescu, D.M. Shah, Method for preparation of a Superalloy having a crystallographic texture controlled microstructure by electron beam melting. U.S. Patent Publication No. EP3015706A2—Sept. 14, 2016; filing date Oct. 28, (2014)
55.
go back to reference A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, R.W. Wicker, Joining Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology. Mater. Des. 94, 17–27 (2016)CrossRef A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, R.W. Wicker, Joining Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology. Mater. Des. 94, 17–27 (2016)CrossRef
56.
go back to reference L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, B.I. Machado, P.W. Shindo, J.L. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, R.B. Wicker, Microstructural architecture, microstructures, and mechanical properties of a nickel-base Superalloy fabricated by electron beam melting. Metall. Mater. Trans. A 42A, 3491–3508 (2011)CrossRef L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, B.I. Machado, P.W. Shindo, J.L. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, R.B. Wicker, Microstructural architecture, microstructures, and mechanical properties of a nickel-base Superalloy fabricated by electron beam melting. Metall. Mater. Trans. A 42A, 3491–3508 (2011)CrossRef
57.
go back to reference A. Uriando, M. Esperm-Miguez, S. Perinpanayagam, The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 229(11), 2132–2147 (2015)CrossRef A. Uriando, M. Esperm-Miguez, S. Perinpanayagam, The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 229(11), 2132–2147 (2015)CrossRef
58.
go back to reference M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaci, S. Dariewicz, J.J. Lewandowski, Progress towards metal additive manufacturing standardization to support qualification and certification. JOM 69(3), 439–455 (2017)CrossRef M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaci, S. Dariewicz, J.J. Lewandowski, Progress towards metal additive manufacturing standardization to support qualification and certification. JOM 69(3), 439–455 (2017)CrossRef
59.
go back to reference L.E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, 1975) L.E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, 1975)
60.
go back to reference M. Orme, E.P. Muntz, A new technique for producing highly uniform droplet stream over an extended range of disturbance wave number. Rev. Sci. Instrum. 58, 279–284 (1978)CrossRef M. Orme, E.P. Muntz, A new technique for producing highly uniform droplet stream over an extended range of disturbance wave number. Rev. Sci. Instrum. 58, 279–284 (1978)CrossRef
61.
go back to reference M. Orme, On the genesis of droplet stream microspeed dispersions. Phys. Fluids 312, 2936–2947 (1991)CrossRef M. Orme, On the genesis of droplet stream microspeed dispersions. Phys. Fluids 312, 2936–2947 (1991)CrossRef
62.
go back to reference M. Orme, C. Huang, J. Courter, Precision droplet based manufacturing and material synthesis: fluid dynamics and thermal control issues. ILASS J. Atom. Sprays 6, 305–329 (1996)CrossRef M. Orme, C. Huang, J. Courter, Precision droplet based manufacturing and material synthesis: fluid dynamics and thermal control issues. ILASS J. Atom. Sprays 6, 305–329 (1996)CrossRef
63.
go back to reference M. Orme, Q. Liu, R. Smith, Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications. Alum. Trans. 3(1), 95–103 (2000) M. Orme, Q. Liu, R. Smith, Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications. Alum. Trans. 3(1), 95–103 (2000)
64.
go back to reference A.A. Tseng, M.H. Lee, B. Zhao, Design and generation of a droplet deposition system for freeform fabrication of metal parts. Trans. ASME 132, 74–84 (2001) A.A. Tseng, M.H. Lee, B. Zhao, Design and generation of a droplet deposition system for freeform fabrication of metal parts. Trans. ASME 132, 74–84 (2001)
65.
go back to reference S.X. Cheng, T. Li, S. Chandra, Producing molten metal droplets with a pneumatic droplet-on-demand generator. J. Mater. Process. Technol. 159(3), 295–302 (2005)CrossRef S.X. Cheng, T. Li, S. Chandra, Producing molten metal droplets with a pneumatic droplet-on-demand generator. J. Mater. Process. Technol. 159(3), 295–302 (2005)CrossRef
66.
go back to reference X.-S. Jiang, L.-H. Qi, J. Luo, H. Huang, J.-M. Zhou, Research on accurate droplet generation for microdroplet deposition manufacture. Int. J. Adv. Manuf. Technol. 49(5), 535–541 (2010)CrossRef X.-S. Jiang, L.-H. Qi, J. Luo, H. Huang, J.-M. Zhou, Research on accurate droplet generation for microdroplet deposition manufacture. Int. J. Adv. Manuf. Technol. 49(5), 535–541 (2010)CrossRef
67.
go back to reference Y-P. Chao, 3D printing and manufacture micro-channel structure by metal micro-droplet-on-demand deposition. Adv. Mater. Rev. 940, 311–315 (2014) Y-P. Chao, 3D printing and manufacture micro-channel structure by metal micro-droplet-on-demand deposition. Adv. Mater. Rev. 940, 311–315 (2014)
68.
go back to reference J.B. Lee, D. Derome, A. Dolatabadi, J. Carmeliet, Energy budget of liquid drop impact at maximum spreading: Numerical simulations and experiments. Langmuir 32(5), 1279–1288 (2016)CrossRef J.B. Lee, D. Derome, A. Dolatabadi, J. Carmeliet, Energy budget of liquid drop impact at maximum spreading: Numerical simulations and experiments. Langmuir 32(5), 1279–1288 (2016)CrossRef
69.
go back to reference B. Ballinger, R. S. Abbari, Excitation and dynamics of liquid tin micrometer droplet generation. Phys. Fluids 28, 074105 (1-20) (2016) B. Ballinger, R. S. Abbari, Excitation and dynamics of liquid tin micrometer droplet generation. Phys. Fluids 28, 074105 (1-20) (2016)
70.
go back to reference T. Wang, T.-H. Kusok, C. Zhou, In-situ droplet inspection and control system for liquid metal jet 3D printing process. Procedia Manuf. 10, 968–991 (2017)CrossRef T. Wang, T.-H. Kusok, C. Zhou, In-situ droplet inspection and control system for liquid metal jet 3D printing process. Procedia Manuf. 10, 968–991 (2017)CrossRef
71.
go back to reference D.A. Ramirez, L.E. Murr, E. Martinez, D.H. Hernandez, J.L. Martinez, B.I. Machado, F. Medina, R.B. Wicker, P. Frigola, Novel precipitate microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 59, 4088–4099 (2011)CrossRef D.A. Ramirez, L.E. Murr, E. Martinez, D.H. Hernandez, J.L. Martinez, B.I. Machado, F. Medina, R.B. Wicker, P. Frigola, Novel precipitate microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 59, 4088–4099 (2011)CrossRef
72.
go back to reference H.E. Collins, Superalloys (ASM International, Metals Park, 1968) H.E. Collins, Superalloys (ASM International, Metals Park, 1968)
73.
go back to reference S.D. Antolovich, R.W. Stasrad, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klanstrom (eds.), Superalloys 1992 (The Minerals, Metals and Materials Society (TMS), Warrendale, 1992) S.D. Antolovich, R.W. Stasrad, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klanstrom (eds.), Superalloys 1992 (The Minerals, Metals and Materials Society (TMS), Warrendale, 1992)
74.
go back to reference R.C. Reed, The superalloys: fundamentals and applications (Cambridge Univ. Press, Cambridge, 2008) R.C. Reed, The superalloys: fundamentals and applications (Cambridge Univ. Press, Cambridge, 2008)
75.
go back to reference D. F. Poulonis, J. M. Oblak, D. S. Duvall, D.S. Precipitation in nickel base alloy 718. ASM Trans. Quart. 62, C11-C22 (1969) D. F. Poulonis, J. M. Oblak, D. S. Duvall, D.S. Precipitation in nickel base alloy 718. ASM Trans. Quart. 62, C11-C22 (1969)
76.
go back to reference B.H. Kear, J.M. Oblak, Deformation modes in γ′ precipitation hardened nickel-base alloys. J. de Physique 12(35), C1–C35 (1974) B.H. Kear, J.M. Oblak, Deformation modes in γ′ precipitation hardened nickel-base alloys. J. de Physique 12(35), C1–C35 (1974)
77.
go back to reference M. Durand-Charre, The microstructure of superalloys (Gordon & Breach, Amsterdam, 1977) M. Durand-Charre, The microstructure of superalloys (Gordon & Breach, Amsterdam, 1977)
78.
go back to reference G.R. Leverant, B.H. Kear, J.M. Oblak, Creep of precipitation-hardened, nickel-base alloy single crystals at high temperature. Metall. Mater. Trans. B B4(1), 355–362 (1973)CrossRef G.R. Leverant, B.H. Kear, J.M. Oblak, Creep of precipitation-hardened, nickel-base alloy single crystals at high temperature. Metall. Mater. Trans. B B4(1), 355–362 (1973)CrossRef
79.
go back to reference S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, Comparison of microstructures and mechanical properties of solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall. Mater. Trans. A 41A, 3216–3227 (2010)CrossRef S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, Comparison of microstructures and mechanical properties of solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall. Mater. Trans. A 41A, 3216–3227 (2010)CrossRef
80.
go back to reference L.E. Murr, S.M. Gaytan, in Electron beam melting. ed. by S. Masoad. Comprehensive materials processing, vol. 10 (Elsevier Ltd., London, 2010), pp. 135–161 L.E. Murr, S.M. Gaytan, in Electron beam melting. ed. by S. Masoad. Comprehensive materials processing, vol. 10 (Elsevier Ltd., London, 2010), pp. 135–161
81.
go back to reference A. Niang, J. Huez, J. Lacase, B. Viguier, Cauterizing precipitation defects in nickel base 718 alloy. Mater. Sci. Forum 636–637, 517–522 (2010)CrossRef A. Niang, J. Huez, J. Lacase, B. Viguier, Cauterizing precipitation defects in nickel base 718 alloy. Mater. Sci. Forum 636–637, 517–522 (2010)CrossRef
82.
go back to reference K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, Microstructures and mechanical behavior for Inconel 718 fabricated by selective laser melting. Acta Mater. 60, 2229–2239 (2012)CrossRef K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, Microstructures and mechanical behavior for Inconel 718 fabricated by selective laser melting. Acta Mater. 60, 2229–2239 (2012)CrossRef
83.
go back to reference A. Strondl, R. Fischer, G. Frommeyer, A. Schneider, Investigations of MX and γ/γ′ precipitates in the nickel-based Superalloy 718 produced by electron beam melting. Mater. Sci. Eng. A 480A, 138–147 (2008)CrossRef A. Strondl, R. Fischer, G. Frommeyer, A. Schneider, Investigations of MX and γ/γ′ precipitates in the nickel-based Superalloy 718 produced by electron beam melting. Mater. Sci. Eng. A 480A, 138–147 (2008)CrossRef
84.
go back to reference T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep behavior of Ni-base single-crystal superalloys with various gamma prime volume fraction. Acta Mater. 52(12), 3737–3744 (2004)CrossRef T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep behavior of Ni-base single-crystal superalloys with various gamma prime volume fraction. Acta Mater. 52(12), 3737–3744 (2004)CrossRef
85.
go back to reference T.M. Pollock, S.J. Tin, Nickel-based Superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propulsion Power 22(2), 361–374 (2006)CrossRef T.M. Pollock, S.J. Tin, Nickel-based Superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propulsion Power 22(2), 361–374 (2006)CrossRef
86.
go back to reference P. Caron, O.J. Lavigne, Recent studies at Oneva on Superalloys for single crystal turbine blades. J. Aeorspace Lab 3, 1–14 (2001) P. Caron, O.J. Lavigne, Recent studies at Oneva on Superalloys for single crystal turbine blades. J. Aeorspace Lab 3, 1–14 (2001)
87.
go back to reference L.E. Murr, E. Martinez, X.M. Pan, S.M. Gaytan, J.A. Castro, C.A. Terrazas, F. Medina, R.B. Wicker, D.H. Abbott, Microstructures of Rene 142 nickel-based Superalloy fabricated by electron beam melting. Acta Mater. 61(11), 4289–4296 (2013)CrossRef L.E. Murr, E. Martinez, X.M. Pan, S.M. Gaytan, J.A. Castro, C.A. Terrazas, F. Medina, R.B. Wicker, D.H. Abbott, Microstructures of Rene 142 nickel-based Superalloy fabricated by electron beam melting. Acta Mater. 61(11), 4289–4296 (2013)CrossRef
88.
go back to reference R. Gevers, P. Delavignette, H. Blank, J. Van Landuyt, S. Amelinckx, Electron microscopy transmission images of coherent domain boundaries I. Dyn. Theory. Phys. Stat. Sol. B 4, 383–410 (1964)CrossRef R. Gevers, P. Delavignette, H. Blank, J. Van Landuyt, S. Amelinckx, Electron microscopy transmission images of coherent domain boundaries I. Dyn. Theory. Phys. Stat. Sol. B 4, 383–410 (1964)CrossRef
89.
go back to reference R. Gevers, P. Delavignette, H. Blank, J. Van Landuyt, S. Amelinckx. Electron microscope transmission images of coherent domain boundaries II. Observations. Phys. Stat. Solid 5(3), 595–633 (1964)CrossRef R. Gevers, P. Delavignette, H. Blank, J. Van Landuyt, S. Amelinckx. Electron microscope transmission images of coherent domain boundaries II. Observations. Phys. Stat. Solid 5(3), 595–633 (1964)CrossRef
90.
go back to reference L.E. Murr, E. Martinez, X.M. Pan, C.M. Wang, J. Yang, S.J. Li, F. Yang, Q. Xu, J. Hernandez, W. Zhu, S.M. Gaytan, F. Medina, R.B. Wicker, Properties of solid and reticulated mesh components of pure iron fabricated by electron beam melting. J. Mater. Res. Technol. 2(4), 76–88 (2013)CrossRef L.E. Murr, E. Martinez, X.M. Pan, C.M. Wang, J. Yang, S.J. Li, F. Yang, Q. Xu, J. Hernandez, W. Zhu, S.M. Gaytan, F. Medina, R.B. Wicker, Properties of solid and reticulated mesh components of pure iron fabricated by electron beam melting. J. Mater. Res. Technol. 2(4), 76–88 (2013)CrossRef
91.
go back to reference E. Martinez, L.E. Murr, J. Hernandez, X.M. Pan, K.N. Amato, P. Frigola, C. Terrazas, S.M. Gaytan, E. Rodriguez, F. Medina, R.B. Wicker, Microstructures of niobium components fabricated by electron beam melting. Metallog. Microstruct. Anal. 3(2), 183–189 (2013)CrossRef E. Martinez, L.E. Murr, J. Hernandez, X.M. Pan, K.N. Amato, P. Frigola, C. Terrazas, S.M. Gaytan, E. Rodriguez, F. Medina, R.B. Wicker, Microstructures of niobium components fabricated by electron beam melting. Metallog. Microstruct. Anal. 3(2), 183–189 (2013)CrossRef
92.
go back to reference S. Natividad, A. Acosta, K.N. Amato, J. Ventura, B. Portillo, S.K. Varma, Heat treatment and oxidation characteristics of Nb-20Mo-15Si-5B-20 (Cr, Ti) alloys from 700 to 1400 C. Mater. Sci. Forum 638–642(638–642), 2351–2356 (2010)CrossRef S. Natividad, A. Acosta, K.N. Amato, J. Ventura, B. Portillo, S.K. Varma, Heat treatment and oxidation characteristics of Nb-20Mo-15Si-5B-20 (Cr, Ti) alloys from 700 to 1400 C. Mater. Sci. Forum 638–642(638–642), 2351–2356 (2010)CrossRef
93.
go back to reference B. Portillo, S.K. Varma, Oxidation behavior of Nb-20Mo-15Si-25Cr and Nb-20Mo-15Si-25Cr-5B alloys. Metall. Mater. Trans. A 43A, 147–154 (2012)CrossRef B. Portillo, S.K. Varma, Oxidation behavior of Nb-20Mo-15Si-25Cr and Nb-20Mo-15Si-25Cr-5B alloys. Metall. Mater. Trans. A 43A, 147–154 (2012)CrossRef
94.
go back to reference H. Conrad, S. Feuerstein, L. Rice, Effects of grain size on the dislocation density and flow stress of niobium. Mater. Sci. Eng. 2, 157–168 (1967)CrossRef H. Conrad, S. Feuerstein, L. Rice, Effects of grain size on the dislocation density and flow stress of niobium. Mater. Sci. Eng. 2, 157–168 (1967)CrossRef
95.
go back to reference E. Louvis, P. Fox, C.J. Sutcliffe, Selective laser melting of aluminum components. J. Mater. Process. Technol. 211, 275–284 (2011)CrossRef E. Louvis, P. Fox, C.J. Sutcliffe, Selective laser melting of aluminum components. J. Mater. Process. Technol. 211, 275–284 (2011)CrossRef
96.
go back to reference T. Mahale, D. Cormier, O. Harrysson, K. Ervin, Advances in electron beam melting of aluminum alloys. Proc. Solid Freeform Fabrication (SFF) Symp. pp. 312–324 (2007) Univ Texas, Austin, TX T. Mahale, D. Cormier, O. Harrysson, K. Ervin, Advances in electron beam melting of aluminum alloys. Proc. Solid Freeform Fabrication (SFF) Symp. pp. 312–324 (2007) Univ Texas, Austin, TX
97.
go back to reference F. Tresisan, F. Calignano M. Lorusso, J. Pakkanen, A. Arersa, E. P. Ambrosia, M. Lombardi, P. Fino, D. Manpreb, On the selective laser melting (SLM) of the Al-Si-Mg alloy: process, microstructure and mechanical properties. Materials 10(1), 76–90 (2017)CrossRef F. Tresisan, F. Calignano M. Lorusso, J. Pakkanen, A. Arersa, E. P. Ambrosia, M. Lombardi, P. Fino, D. Manpreb, On the selective laser melting (SLM) of the Al-Si-Mg alloy: process, microstructure and mechanical properties. Materials 10(1), 76–90 (2017)CrossRef
98.
go back to reference L. Brice, R. Shenry, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated by additive manufacturing. Mater. Sci. Eng. A 648A, 9–14 (2015)CrossRef L. Brice, R. Shenry, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated by additive manufacturing. Mater. Sci. Eng. A 648A, 9–14 (2015)CrossRef
99.
go back to reference N.T. Abrulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, Selective laser melting of aluminum alloys. MRS Bull. 42(4), 311–319 (2017)CrossRef N.T. Abrulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, Selective laser melting of aluminum alloys. MRS Bull. 42(4), 311–319 (2017)CrossRef
100.
go back to reference A. Kelly, R.B. Nicholson, in Precipitation Hardening, ed by B. Chalmers, Progress in Materials Science, vol. 10, No. 3, (Pergamon Press, New York, 1963) A. Kelly, R.B. Nicholson, in Precipitation Hardening, ed by B. Chalmers, Progress in Materials Science, vol. 10, No. 3, (Pergamon Press, New York, 1963)
101.
go back to reference L.E. Murr, G. Liu, J.C. McClure, A TEM study of precipitation and related microstructures in friction-stir welded 6061 aluminum. J. Mater. Sci. 33, 1243–1251 (1998)CrossRef L.E. Murr, G. Liu, J.C. McClure, A TEM study of precipitation and related microstructures in friction-stir welded 6061 aluminum. J. Mater. Sci. 33, 1243–1251 (1998)CrossRef
102.
go back to reference M. H. Jacobs, The nucleation and growth of precipitates in aluminum alloys. Ph.D. Thesis (Physics Dept., Univ. of Warwick, 1969) M. H. Jacobs, The nucleation and growth of precipitates in aluminum alloys. Ph.D. Thesis (Physics Dept., Univ. of Warwick, 1969)
103.
go back to reference S.C. Wang, M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg(Li) based alloys. Int. Mater. Rev. 51, 193–215 (2015) S.C. Wang, M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg(Li) based alloys. Int. Mater. Rev. 51, 193–215 (2015)
104.
go back to reference L.B. Ber, N. Kolobnev, E.-N. Kablov, Heat Treatment of Aluminum Alloy (CRC Press/Taylor & Francis, Boca Raton, 2015) L.B. Ber, N. Kolobnev, E.-N. Kablov, Heat Treatment of Aluminum Alloy (CRC Press/Taylor & Francis, Boca Raton, 2015)
105.
go back to reference K.A. Bakke, The surface evolver. Exp. Mech. 1, 141–165 (1992) K.A. Bakke, The surface evolver. Exp. Mech. 1, 141–165 (1992)
106.
go back to reference L.E. Murr, K.N. Amato, S.J. Li, Y.-X. Tian, X.-Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, R.B. Wicker, Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 4(7), 396–1411 (2011)CrossRef L.E. Murr, K.N. Amato, S.J. Li, Y.-X. Tian, X.-Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, R.B. Wicker, Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 4(7), 396–1411 (2011)CrossRef
107.
go back to reference L.E. Murr, Open cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. J. Mech. Behav. Biomed. Mater. 76, 164–177 (2017)CrossRef L.E. Murr, Open cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. J. Mech. Behav. Biomed. Mater. 76, 164–177 (2017)CrossRef
108.
go back to reference P. Heinl, L. Muller, C. Korner, R.F. Singer, F.A. Muller, Cellular Ti–6Al–4V structures with interconnected macros porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536–1544 (2008)CrossRef P. Heinl, L. Muller, C. Korner, R.F. Singer, F.A. Muller, Cellular Ti–6Al–4V structures with interconnected macros porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536–1544 (2008)CrossRef
109.
go back to reference V. Karageorgio, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005)CrossRef V. Karageorgio, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005)CrossRef
110.
go back to reference K.C. Nune, R.D.K. Misra, S.M. Gaytan, L.E. Murr, Biological response of next generation of 3D Ti–6Al–4V biomedical devices using additive manufacturing of cellular and functional mesh structures. J. Biomater. Tissue Eng. 4(10), 755–771 (2014)CrossRef K.C. Nune, R.D.K. Misra, S.M. Gaytan, L.E. Murr, Biological response of next generation of 3D Ti–6Al–4V biomedical devices using additive manufacturing of cellular and functional mesh structures. J. Biomater. Tissue Eng. 4(10), 755–771 (2014)CrossRef
111.
go back to reference A. Kumar, K.C. Nune, L.E. Murr, R.D.K. Misra, Biocompatibility and mechanical behavior of three-dimensional scaffolds for biomedical devices: process-structure-property paradigm. Int. Mater. Rev. 61(1), 20–45 (2016)CrossRef A. Kumar, K.C. Nune, L.E. Murr, R.D.K. Misra, Biocompatibility and mechanical behavior of three-dimensional scaffolds for biomedical devices: process-structure-property paradigm. Int. Mater. Rev. 61(1), 20–45 (2016)CrossRef
112.
go back to reference L.J. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials. Proc. Roy. Soc. Lond. Math. Phys. Sci. 383, 43–49 (1982)CrossRef L.J. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials. Proc. Roy. Soc. Lond. Math. Phys. Sci. 383, 43–49 (1982)CrossRef
113.
go back to reference M. Niinomi, Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A A243, 231–236 (1998)CrossRef M. Niinomi, Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A A243, 231–236 (1998)CrossRef
114.
go back to reference Y.C. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, R. Yang, Elastic deformation behavior of Ti-24Nb-4Zr-7-9Sn for biomedical applications. Acta Biomater. 3, 277–286 (2007)CrossRef Y.C. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, R. Yang, Elastic deformation behavior of Ti-24Nb-4Zr-7-9Sn for biomedical applications. Acta Biomater. 3, 277–286 (2007)CrossRef
115.
go back to reference J. Hernandez, S.J. Li, E. Martinez, L.E. Murr, X.M. Pan, K.N. Amato, X.Y. Cheng, F. Yang, C.A. Terrazas, Y.C. Hao, R. Yang, F. Medina, R.B. Wicker, Microstructures and hardness properties for & β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting. J. Mater. Sci. Technol. 29(11), 1011–1017 (2013)CrossRef J. Hernandez, S.J. Li, E. Martinez, L.E. Murr, X.M. Pan, K.N. Amato, X.Y. Cheng, F. Yang, C.A. Terrazas, Y.C. Hao, R. Yang, F. Medina, R.B. Wicker, Microstructures and hardness properties for & β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting. J. Mater. Sci. Technol. 29(11), 1011–1017 (2013)CrossRef
116.
go back to reference L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge Univ. Press, Cambridge, 1997)CrossRef L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge Univ. Press, Cambridge, 1997)CrossRef
117.
go back to reference S.J. Li, L.E. Murr, X.Y. Cheng, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 60, 793–802 (2012)CrossRef S.J. Li, L.E. Murr, X.Y. Cheng, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 60, 793–802 (2012)CrossRef
118.
go back to reference S.J. Li, Q.S. Xu, Z. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.E. Murr, Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting. Acta Biomater. 10, 4537–4547 (2014)CrossRef S.J. Li, Q.S. Xu, Z. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.E. Murr, Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting. Acta Biomater. 10, 4537–4547 (2014)CrossRef
119.
go back to reference P.F. Gomez, J.A. Morcuende, Early attempts at hip arthroplasty: 1700s to 1950s. Iowa Orthoped. J. 25, 25–29 (2005) P.F. Gomez, J.A. Morcuende, Early attempts at hip arthroplasty: 1700s to 1950s. Iowa Orthoped. J. 25, 25–29 (2005)
120.
go back to reference S.R. Knight, R. Aujla, S.P. Biswas, Total hip arthroplasty-over 100 years of operative history. Orthoped. Rev. 3(2), 1–16 (2011)CrossRef S.R. Knight, R. Aujla, S.P. Biswas, Total hip arthroplasty-over 100 years of operative history. Orthoped. Rev. 3(2), 1–16 (2011)CrossRef
121.
go back to reference M.H. Kremer, D.R. Larson, C.S. Crawson, W.K. Krema, R.E. Washington, C.A. Skiner, C Prevalence of total hip and knee replacement in the United States. J. Bone Jt. Surg. Amer. 97(17), 1386–1397 (2015)CrossRef M.H. Kremer, D.R. Larson, C.S. Crawson, W.K. Krema, R.E. Washington, C.A. Skiner, C Prevalence of total hip and knee replacement in the United States. J. Bone Jt. Surg. Amer. 97(17), 1386–1397 (2015)CrossRef
122.
go back to reference H. Cai, Application of 3D pointing in orthopedics: Status quo and opportunities in China. Ann. Transl. Med. 3(Suppl 1), S12–S15 (2015) H. Cai, Application of 3D pointing in orthopedics: Status quo and opportunities in China. Ann. Transl. Med. 3(Suppl 1), S12–S15 (2015)
123.
go back to reference S. J. Li, X. K. Hou, K. C. Nune, R. D. K. Misra, V. L. Correa-Rodriguez, Z. Guo, Y. L. Hao, R. Yang, L. E., Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Sci. China Mater. Published online 4 August (2017) S. J. Li, X. K. Hou, K. C. Nune, R. D. K. Misra, V. L. Correa-Rodriguez, Z. Guo, Y. L. Hao, R. Yang, L. E., Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Sci. China Mater. Published online 4 August (2017)
124.
go back to reference L.E. Murr, Additive Manufacturing of Biomedical Devices: An Overview (Mater, Technol, 2018) L.E. Murr, Additive Manufacturing of Biomedical Devices: An Overview (Mater, Technol, 2018)
125.
go back to reference D.C. Ackland, D. Robinson, M. Redhead, P. VeeSinLi, A. Moskaljuk, G. Dimitroulis, A personalized 3D printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. J. Mech. Behav. Biomed. Mater. 69, 404–411 (2017)CrossRef D.C. Ackland, D. Robinson, M. Redhead, P. VeeSinLi, A. Moskaljuk, G. Dimitroulis, A personalized 3D printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. J. Mech. Behav. Biomed. Mater. 69, 404–411 (2017)CrossRef
126.
go back to reference V. Weissmann, P. Drescher, R. Bader, H. Seitz, H. Hansmann, N. Laufer, Comparison of single Ti–6Al–4V struts made using selective laser melting and electron beam melting subject to part orientation. Metals 7, 91–98 (2017)CrossRef V. Weissmann, P. Drescher, R. Bader, H. Seitz, H. Hansmann, N. Laufer, Comparison of single Ti–6Al–4V struts made using selective laser melting and electron beam melting subject to part orientation. Metals 7, 91–98 (2017)CrossRef
127.
go back to reference D.A. Ramirez, L.E. Murr, S.J. Li, E. Tian, E. Martinez, B.I. Machado, S.M. Gaytan, F. Medina, R.B. Wicker, Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 528A, 5379–5386 (2011)CrossRef D.A. Ramirez, L.E. Murr, S.J. Li, E. Tian, E. Martinez, B.I. Machado, S.M. Gaytan, F. Medina, R.B. Wicker, Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 528A, 5379–5386 (2011)CrossRef
128.
go back to reference L.E. Murr, S.J. Li, Y. Jian, K.N. Amato, E. Martinez, F. Medina, Open-cellular Co-base and Ni-base Superalloys fabricated by electron beam melting. Materials 4, 782–790 (2011)CrossRef L.E. Murr, S.J. Li, Y. Jian, K.N. Amato, E. Martinez, F. Medina, Open-cellular Co-base and Ni-base Superalloys fabricated by electron beam melting. Materials 4, 782–790 (2011)CrossRef
129.
go back to reference X. Zhao, S.J. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y.L. Hao, R. Yang, L.E. Murr, Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 95, 21–31 (2016)CrossRef X. Zhao, S.J. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y.L. Hao, R. Yang, L.E. Murr, Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 95, 21–31 (2016)CrossRef
130.
go back to reference L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20–32 (2010)CrossRef L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20–32 (2010)CrossRef
131.
go back to reference K.N. Amato, J. Hernandez, L.E. Murr, E. Martinez, S.M. Gaytan, P.W. Shindo, Comparison of microstructures and properties for a Ni-base Superalloy (Alloy 625) fabricated by electron and laser beam melting. J. Mater. Res. 1(2), 3–15 (2012) K.N. Amato, J. Hernandez, L.E. Murr, E. Martinez, S.M. Gaytan, P.W. Shindo, Comparison of microstructures and properties for a Ni-base Superalloy (Alloy 625) fabricated by electron and laser beam melting. J. Mater. Res. 1(2), 3–15 (2012)
132.
go back to reference T. Trosch, J. Strossner, R. Volkl, U. Glatzel, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 164, 428–431 (2016)CrossRef T. Trosch, J. Strossner, R. Volkl, U. Glatzel, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 164, 428–431 (2016)CrossRef
133.
go back to reference S.L. Sing, J. An, W.Y. Yeong, F.E. Wirier, Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J. Othoped. Res. 34(3), 369–385 (2016)CrossRef S.L. Sing, J. An, W.Y. Yeong, F.E. Wirier, Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J. Othoped. Res. 34(3), 369–385 (2016)CrossRef
134.
go back to reference D. Hardwick, W.M. Williams, The birth of metallography—The work of Henry Clifton Sorby (1826–1908). Bull. Canad. Inst. Min. Metall. 73(813), 143–144 (1980) D. Hardwick, W.M. Williams, The birth of metallography—The work of Henry Clifton Sorby (1826–1908). Bull. Canad. Inst. Min. Metall. 73(813), 143–144 (1980)
135.
go back to reference C.S. Smith, A history of metallography: the development of ideas on the structure of metals before 1890 (University of Chicago Press, Chicago, 1960) C.S. Smith, A history of metallography: the development of ideas on the structure of metals before 1890 (University of Chicago Press, Chicago, 1960)
136.
go back to reference C.S. Smith, Metallography—How it started and where it’s going. Metallography 8, 91–103 (1975)CrossRef C.S. Smith, Metallography—How it started and where it’s going. Metallography 8, 91–103 (1975)CrossRef
Metadata
Title
A Metallographic Review of 3D Printing/Additive Manufacturing of Metal and Alloy Products and Components
Author
L. E. Murr
Publication date
12-03-2018
Publisher
Springer US
Published in
Metallography, Microstructure, and Analysis / Issue 2/2018
Print ISSN: 2192-9262
Electronic ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-018-0433-6

Other articles of this Issue 2/2018

Metallography, Microstructure, and Analysis 2/2018 Go to the issue

Premium Partners