Skip to main content
Top

2018 | OriginalPaper | Chapter

A Micromachined Silicon Resonant Pressure Sensor

Authors : Junbo Wang, Deyong Chen, Bo Xie, Jian Chen, Lin Zhu, Yulan Lu

Published in: Micro Electro Mechanical Systems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Micromachined silicon resonant pressure sensors have been widely used in automotive industry, medical instrument, aerospace, and military fields due to their high accuracy, long-term stability, and quasi-digital output. This chapter begins with the introduction of the working principle of the resonant pressure sensors, illustrating key relationships between (1) intrinsic resonant frequency and structural parameters, (2) pressure under measurement and resonant frequency shift, and (3) device sensitivity and structural parameters. Then, two kinds of micromachined silicon resonant pressure sensors based on electromagnetic and electrostatic excitations are presented, respectively, where device design, simulation, fabrication, and packaging are discussed in details. Finally, self-temperature compensation approaches are introduced to improve the performance of the micromachined silicon resonant pressure sensors, which can therefore function in a wide temperature range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdolvand R, Ayazi F (2008) An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon. Sens Actuators A Phys 144(1):109–116CrossRef Abdolvand R, Ayazi F (2008) An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon. Sens Actuators A Phys 144(1):109–116CrossRef
go back to reference Beeby SP, Ensell G, Baker BR et al (2000) Micromachined silicon resonant stain gauges fabricated using SOI wafer technology. IEEE J MEMS 9:104–111CrossRef Beeby SP, Ensell G, Baker BR et al (2000) Micromachined silicon resonant stain gauges fabricated using SOI wafer technology. IEEE J MEMS 9:104–111CrossRef
go back to reference Bhardwaj JK, Ashraf H (1995) Advanced silicon etching using high-density plasmas. In: Proceedings of SPIE – the international society for optical engineering, Orlando Bhardwaj JK, Ashraf H (1995) Advanced silicon etching using high-density plasmas. In: Proceedings of SPIE – the international society for optical engineering, Orlando
go back to reference Borenstein JT, Gerrish ND (1997) Etch selectivity of novel epitaxial layers for bulk micromachining. MRS Online Proc Lib 546 Borenstein JT, Gerrish ND (1997) Etch selectivity of novel epitaxial layers for bulk micromachining. MRS Online Proc Lib 546
go back to reference Cabuz C, Shoji S, Fukatsu K et al (1994) Fabrication and packaging of a resonant infrared sensor integrated in silicon. Sens Actuators A Phys 43:92–99CrossRef Cabuz C, Shoji S, Fukatsu K et al (1994) Fabrication and packaging of a resonant infrared sensor integrated in silicon. Sens Actuators A Phys 43:92–99CrossRef
go back to reference Charavel R, Lanconte J, Raskin JP (2003) Advantages of p++ polysilicon etch stop layer versus p++ silicon. Proc SPIE Smart Sensors, Actuators and MEMS 5116:699–709CrossRef Charavel R, Lanconte J, Raskin JP (2003) Advantages of p++ polysilicon etch stop layer versus p++ silicon. Proc SPIE Smart Sensors, Actuators and MEMS 5116:699–709CrossRef
go back to reference Chen DY (2002) Research on micromachined resonant beam pressure sensors. Dissertation, University of Chinese Academy of Sciences Chen DY (2002) Research on micromachined resonant beam pressure sensors. Dissertation, University of Chinese Academy of Sciences
go back to reference Chen DY, Cui DF, Xia SH et al (2005) Design and modeling of a silicon nitride beam resonant pressure sensor for temperature compensation. In: Proceedings of the 2nd IEEE international conference on information acquisition, Hong Kong Chen DY, Cui DF, Xia SH et al (2005) Design and modeling of a silicon nitride beam resonant pressure sensor for temperature compensation. In: Proceedings of the 2nd IEEE international conference on information acquisition, Hong Kong
go back to reference Chen DY, Wu ZW, Shi XJ et al (2009) Design and modeling of an electromagnetically excited silicon nitride beam resonant pressure sensor. In: Proceedings of the 4th IEEE international conference of nano/micro engineered and molecular systems, Shenzhen Chen DY, Wu ZW, Shi XJ et al (2009) Design and modeling of an electromagnetically excited silicon nitride beam resonant pressure sensor. In: Proceedings of the 4th IEEE international conference of nano/micro engineered and molecular systems, Shenzhen
go back to reference Chen DY, Li YX, Liu M et al (2010a) Design and experiment of a laterally driven micromachined resonant pressure sensor for barometers. Procedia Eng 5:1490–1493CrossRef Chen DY, Li YX, Liu M et al (2010a) Design and experiment of a laterally driven micromachined resonant pressure sensor for barometers. Procedia Eng 5:1490–1493CrossRef
go back to reference Chen DY, Li YX, Liu M et al (2010b) A novel laterally driven micromachined resonant pressure sensor. In: Proceedings of the 9th IEEE international conference on sensors, Hawaii Chen DY, Li YX, Liu M et al (2010b) A novel laterally driven micromachined resonant pressure sensor. In: Proceedings of the 9th IEEE international conference on sensors, Hawaii
go back to reference Choa SH (2005) Reliability of MEMS packaging: vacuum maintenance and packaging induced stress. Microsyst Technol 11:1187–1196CrossRef Choa SH (2005) Reliability of MEMS packaging: vacuum maintenance and packaging induced stress. Microsyst Technol 11:1187–1196CrossRef
go back to reference Damjanovic D (1998) Materials for high-temperature piezoelectric transducers. Curr Opin Solid State Mater Sci 3:469–473CrossRef Damjanovic D (1998) Materials for high-temperature piezoelectric transducers. Curr Opin Solid State Mater Sci 3:469–473CrossRef
go back to reference Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 7(6):530–539CrossRef Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 7(6):530–539CrossRef
go back to reference Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18:01–13CrossRef Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18:01–13CrossRef
go back to reference Greenwood JC, Satchell DW (1988) Miniature silicon resonant pressure sensor. IEE Proc D Control Theory Appl 135(5):369–372CrossRef Greenwood JC, Satchell DW (1988) Miniature silicon resonant pressure sensor. IEE Proc D Control Theory Appl 135(5):369–372CrossRef
go back to reference Greenwood JC, Wray T (1993) High accuracy pressure measurement with a silicon resonant sensor. Sens Actuators A Phys 37:82–85CrossRef Greenwood JC, Wray T (1993) High accuracy pressure measurement with a silicon resonant sensor. Sens Actuators A Phys 37:82–85CrossRef
go back to reference Guckel H (1991) Surface micromachined pressure transducers. Sens Actuators A Phys 28(28):133–146CrossRef Guckel H (1991) Surface micromachined pressure transducers. Sens Actuators A Phys 28(28):133–146CrossRef
go back to reference Guckel H, Sniegowski JJ, Christenson TR et al (1990) The application of fine-grained, tensile polysilicon to mechanically resonant transducers. Sens Actuators A Phys 21(1–3):346–351CrossRef Guckel H, Sniegowski JJ, Christenson TR et al (1990) The application of fine-grained, tensile polysilicon to mechanically resonant transducers. Sens Actuators A Phys 21(1–3):346–351CrossRef
go back to reference Harada K, Ikeda K, Kuwayama H et al (1996) Various applications of resonant pressure sensor chip based on 3D micromachining. Sens Actuators A Phys 73:261–266CrossRef Harada K, Ikeda K, Kuwayama H et al (1996) Various applications of resonant pressure sensor chip based on 3D micromachining. Sens Actuators A Phys 73:261–266CrossRef
go back to reference Hirano T, Furuhata T, Gabriel KJ et al (1992) Design, fabrication, and operation of submicron gap comb-drive microactuators. IEEE J MEMS 1:52–59CrossRef Hirano T, Furuhata T, Gabriel KJ et al (1992) Design, fabrication, and operation of submicron gap comb-drive microactuators. IEEE J MEMS 1:52–59CrossRef
go back to reference Ikeda K, Kuwayama H, Kobayashi T et al (1990) Silicon pressure sensor integrates resonant strain gauge on diaphragm. Sens Actuators A Phys 21:146–150CrossRef Ikeda K, Kuwayama H, Kobayashi T et al (1990) Silicon pressure sensor integrates resonant strain gauge on diaphragm. Sens Actuators A Phys 21:146–150CrossRef
go back to reference Ikeda K, Kuwayama H, Kobayashi T et al (1991) Three-dimensional micromachining of silicon pressure sensor integrating resonant strain gauge on diaphragm. Sens Actuators A Phys 23:1007–1010CrossRef Ikeda K, Kuwayama H, Kobayashi T et al (1991) Three-dimensional micromachining of silicon pressure sensor integrating resonant strain gauge on diaphragm. Sens Actuators A Phys 23:1007–1010CrossRef
go back to reference Ji HX, Yu P, Liang XJ (2000) Research of sensor nonlinear compensation. Machinery 10:1127–1130 Ji HX, Yu P, Liang XJ (2000) Research of sensor nonlinear compensation. Machinery 10:1127–1130
go back to reference Jiao HL, Xie B, Wang JB et al (2013) Electrostatically driven and capacitively detected differential lateral resonant pressure microsensor. Micro Nano Lett 8(10):650–653CrossRef Jiao HL, Xie B, Wang JB et al (2013) Electrostatically driven and capacitively detected differential lateral resonant pressure microsensor. Micro Nano Lett 8(10):650–653CrossRef
go back to reference Kasten K, Amelung J, Mokwa W (2000) CMOS-compatible capacitive high-temperature pressure sensors. Sens Actuators A Phys 85:147–152CrossRef Kasten K, Amelung J, Mokwa W (2000) CMOS-compatible capacitive high-temperature pressure sensors. Sens Actuators A Phys 85:147–152CrossRef
go back to reference Kinnell PK, Craddock R (2009) Advances in silicon resonant pressure transducers. Procedia Chem 1:104–107CrossRef Kinnell PK, Craddock R (2009) Advances in silicon resonant pressure transducers. Procedia Chem 1:104–107CrossRef
go back to reference Klaassen EH, Petersen K, Noworolski JM et al (1996) Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sens Actuators A Phys 52(1–3):132–139CrossRef Klaassen EH, Petersen K, Noworolski JM et al (1996) Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sens Actuators A Phys 52(1–3):132–139CrossRef
go back to reference Li YX, Chen DY, Wang JB (2011) Stress isolation used in MEMS resonant pressure sensor package. Procedia Eng 25:455–458CrossRef Li YX, Chen DY, Wang JB (2011) Stress isolation used in MEMS resonant pressure sensor package. Procedia Eng 25:455–458CrossRef
go back to reference Li YX, Chen DY, Wang JB (2012) Low temperature wafer level adhesive bonding using BCB for resonant pressure sensor. Key Eng Mater 503:75–80CrossRef Li YX, Chen DY, Wang JB (2012) Low temperature wafer level adhesive bonding using BCB for resonant pressure sensor. Key Eng Mater 503:75–80CrossRef
go back to reference Li YX, Chen DY, Wang JB (2013) A new stress isolation method in the packaging of resonant pressure micro sensors. Sens Lett 11(2):264–269CrossRef Li YX, Chen DY, Wang JB (2013) A new stress isolation method in the packaging of resonant pressure micro sensors. Sens Lett 11(2):264–269CrossRef
go back to reference Li YN, Wang JB, Luo ZY et al (2015) A resonant pressure microsensor capable of self-temperature compensation. Sensors 15(5):10048–10058CrossRef Li YN, Wang JB, Luo ZY et al (2015) A resonant pressure microsensor capable of self-temperature compensation. Sensors 15(5):10048–10058CrossRef
go back to reference Liang WF, Wang XD, Liang PE (2007) Pressure sensor temperature compensation based on least squares support vector machine. Chin J Sci Instrum 12:2235–2238 Liang WF, Wang XD, Liang PE (2007) Pressure sensor temperature compensation based on least squares support vector machine. Chin J Sci Instrum 12:2235–2238
go back to reference Longoni G, Conte A, Moraja M et al (2006) Stable and reliable Q-factor in resonant MEMS with getter film. In: Proceedings of the 44th IEEE annual international reliability physics symposium, San Jose Longoni G, Conte A, Moraja M et al (2006) Stable and reliable Q-factor in resonant MEMS with getter film. In: Proceedings of the 44th IEEE annual international reliability physics symposium, San Jose
go back to reference Luo ZY, Chen DY, Wang JB (2013) A differential resonant barometric pressure sensor using SOI-MEMS technology. In: Proceedings of the 12th IEEE international conference on sensors, Baltiomore Luo ZY, Chen DY, Wang JB (2013) A differential resonant barometric pressure sensor using SOI-MEMS technology. In: Proceedings of the 12th IEEE international conference on sensors, Baltiomore
go back to reference Luo ZY, Chen DY, Wang JB et al (2014a) A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. Sensors 14:24244–24257CrossRef Luo ZY, Chen DY, Wang JB et al (2014a) A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. Sensors 14:24244–24257CrossRef
go back to reference Luo ZY, Chen DY, Wang JB (2014b) A SOI-MEMS based resonant barometric pressure sensor with differential output. Key Eng Mater 609(610):1033–1039CrossRef Luo ZY, Chen DY, Wang JB (2014b) A SOI-MEMS based resonant barometric pressure sensor with differential output. Key Eng Mater 609(610):1033–1039CrossRef
go back to reference Luo ZY, Chen DY, Wang JB (2014c) Resonant pressure sensor with Through-glass electrical interconnect based on SOI wafer technology. In: Proceedings of IEEE NEMS, Hawaii Luo ZY, Chen DY, Wang JB (2014c) Resonant pressure sensor with Through-glass electrical interconnect based on SOI wafer technology. In: Proceedings of IEEE NEMS, Hawaii
go back to reference Luo ZY, Li YN, Xie B et al (2015) A self-temperature compensating barometer with dual doubly-clamped resonators. In: Proceedings of the 18th international conference on solid-state sensors, actuators & microsystems, Anchorage Luo ZY, Li YN, Xie B et al (2015) A self-temperature compensating barometer with dual doubly-clamped resonators. In: Proceedings of the 18th international conference on solid-state sensors, actuators & microsystems, Anchorage
go back to reference Mandle J, Lefort O, Migeon A (1995) A new micromachined silicon high-accuracy pressure sensor. Sens Actuators A Phys 46:129–132CrossRef Mandle J, Lefort O, Migeon A (1995) A new micromachined silicon high-accuracy pressure sensor. Sens Actuators A Phys 46:129–132CrossRef
go back to reference Marty F, Rousseau L, Saadany B et al (2005) Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectron J 36(7):673–677CrossRef Marty F, Rousseau L, Saadany B et al (2005) Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectron J 36(7):673–677CrossRef
go back to reference Melamud R, Chandorkar SA, Kim B et al (2009) Temperature-insensitive composite micromechanical resonators. J MEMS 18(6):1409–1419CrossRef Melamud R, Chandorkar SA, Kim B et al (2009) Temperature-insensitive composite micromechanical resonators. J MEMS 18(6):1409–1419CrossRef
go back to reference Mitchell J, Lahiji GR, Najafi K (2005) Encapsulation of vacuum sensors in a wafer level package using a gold-silicon eutectic. In: Proceedings of the 13th international conference on solid-state sensors, actuators & microsystems, Seoul Mitchell J, Lahiji GR, Najafi K (2005) Encapsulation of vacuum sensors in a wafer level package using a gold-silicon eutectic. In: Proceedings of the 13th international conference on solid-state sensors, actuators & microsystems, Seoul
go back to reference Moraja M, Amiotti M (2003) Getters films at wafer level for wafer to wafer bonded MEMS. In: Proceedings of symposium on design, test, integration and packaging of MEMS/MOEMS, Mandelieu-Lanapoule Moraja M, Amiotti M (2003) Getters films at wafer level for wafer to wafer bonded MEMS. In: Proceedings of symposium on design, test, integration and packaging of MEMS/MOEMS, Mandelieu-Lanapoule
go back to reference O’Mahony C, Hill M, Olszewski Z et al (2009) Wafer-level thin-film encapsulation for MEMS. Microelectron 86:1311–1313CrossRef O’Mahony C, Hill M, Olszewski Z et al (2009) Wafer-level thin-film encapsulation for MEMS. Microelectron 86:1311–1313CrossRef
go back to reference Otmani R, Benmoussa N, Benyoucef B (2011) The thermal drift characteristics of piezoresistive pressure sensor. Phys Procedia 21:47–52CrossRef Otmani R, Benmoussa N, Benyoucef B (2011) The thermal drift characteristics of piezoresistive pressure sensor. Phys Procedia 21:47–52CrossRef
go back to reference Pensala T, Jaakkola A et al (2011) Temperature compensation of silicon MEMS resonators by heavy doping. In: Proceedings of the IEEE international ultrasonics symposium, Orlando Pensala T, Jaakkola A et al (2011) Temperature compensation of silicon MEMS resonators by heavy doping. In: Proceedings of the IEEE international ultrasonics symposium, Orlando
go back to reference Petersen K, Barth P, Poydock J et al (1988) Silicon fusion bonding for pressure sensor. In: Proceedings of the solid-state sensor and actuator workshop, Hilton Head Island Petersen K, Barth P, Poydock J et al (1988) Silicon fusion bonding for pressure sensor. In: Proceedings of the solid-state sensor and actuator workshop, Hilton Head Island
go back to reference Pramanik C, Islam T, Saha H (2006) Temperature compensation of piezoresistive micro-machined porous silicon pressure sensor by Ann. Microelectron Reliab 46:343–351CrossRef Pramanik C, Islam T, Saha H (2006) Temperature compensation of piezoresistive micro-machined porous silicon pressure sensor by Ann. Microelectron Reliab 46:343–351CrossRef
go back to reference Santo ZM, Mozek M, Macek S et al (2010) An LTCC-based capacitive pressure sensor with a digital output. Inf MIDEM 40:74–81 Santo ZM, Mozek M, Macek S et al (2010) An LTCC-based capacitive pressure sensor with a digital output. Inf MIDEM 40:74–81
go back to reference Schulz M, Sauerwald J, Richter D et al (2009) Electromechanical properties and defect chemistry of high-temperature piezoelectric materials. Ionics 15:157–161CrossRef Schulz M, Sauerwald J, Richter D et al (2009) Electromechanical properties and defect chemistry of high-temperature piezoelectric materials. Ionics 15:157–161CrossRef
go back to reference Steinsland E, Nese M, Hanneborg A et al (1995) Boron etch-stop in TMAH solutions. Sens Actuators A Phys 1(97):190–193 Steinsland E, Nese M, Hanneborg A et al (1995) Boron etch-stop in TMAH solutions. Sens Actuators A Phys 1(97):190–193
go back to reference Sun YC, Chen ZY, Wang J (2004) Normalizing the polynomial-match for a non-linear function in sensors and solid electronics. J Electron Devices 1:1–7 Sun YC, Chen ZY, Wang J (2004) Normalizing the polynomial-match for a non-linear function in sensors and solid electronics. J Electron Devices 1:1–7
go back to reference Wang JS, Dong YG, Feng GP et al (1997) Temperature characteristics of quartz resonant force sensors and self-temperature-compensation. J Tsinghua Univ (Sci Technol) 8:12–14 Wang JS, Dong YG, Feng GP et al (1997) Temperature characteristics of quartz resonant force sensors and self-temperature-compensation. J Tsinghua Univ (Sci Technol) 8:12–14
go back to reference Wang JB, Chen DY, Xia SH et al (2008a) A novel method to eliminate the co-channel interference of micromachined diffused silicon resonant pressure sensor. In: Proceedings of the 7th IEEE international conference on sensors, Lecce Wang JB, Chen DY, Xia SH et al (2008a) A novel method to eliminate the co-channel interference of micromachined diffused silicon resonant pressure sensor. In: Proceedings of the 7th IEEE international conference on sensors, Lecce
go back to reference Wang JB, Shi XJ, Liu L et al (2008b) A novel resonant pressure sensor with boron diffused silicon resonator. In: Proceedings of SPIE international conference on optical instrument and technology-MEMS/NEMS technology and applications, Beijing Wang JB, Shi XJ, Liu L et al (2008b) A novel resonant pressure sensor with boron diffused silicon resonator. In: Proceedings of SPIE international conference on optical instrument and technology-MEMS/NEMS technology and applications, Beijing
go back to reference Wang JB, Chen DY, Liu L et al (2009) A micromachined resonant pressure sensor with DETFs resonator and differential structure. In: Proceedings of the 8th IEEE international conference on sensors, Chirstchurch Wang JB, Chen DY, Liu L et al (2009) A micromachined resonant pressure sensor with DETFs resonator and differential structure. In: Proceedings of the 8th IEEE international conference on sensors, Chirstchurch
go back to reference Wang JC, Xia XY et al (2013) Piezoresistive pressure sensor with dual-unit configuration for on-chip self-compensation and suppression of temperature drift. In: Proceedings of the international conference on solid-state sensors, actuators & microsystems, Barcelona Wang JC, Xia XY et al (2013) Piezoresistive pressure sensor with dual-unit configuration for on-chip self-compensation and suppression of temperature drift. In: Proceedings of the international conference on solid-state sensors, actuators & microsystems, Barcelona
go back to reference Welham CJ, Greenwood J, Bertioli MM (1999) A high accuracy resonant pressure sensor by fusion bonding and trench etching. Sens Actuators A Phys 76(1–3):298–304CrossRef Welham CJ, Greenwood J, Bertioli MM (1999) A high accuracy resonant pressure sensor by fusion bonding and trench etching. Sens Actuators A Phys 76(1–3):298–304CrossRef
go back to reference Wen H, Daruwalla A, Mirjalili R et al (2016) HARPSS-fabricated nano-gap comb-drive for efficient linear actuation of high frequency BAW resonators. In: Proceedings of IEEE MEMS, Shanghai Wen H, Daruwalla A, Mirjalili R et al (2016) HARPSS-fabricated nano-gap comb-drive for efficient linear actuation of high frequency BAW resonators. In: Proceedings of IEEE MEMS, Shanghai
go back to reference Xie B, Jiao HL, Wang JB et al (2013) An electrostatically-driven and capacitively-sensed differential lateral resonant pressure microsensor. In: Proceedings of the 8th annual IEEE international conference on nano/micro engineered and molecular systems, Suzhou Xie B, Jiao HL, Wang JB et al (2013) An electrostatically-driven and capacitively-sensed differential lateral resonant pressure microsensor. In: Proceedings of the 8th annual IEEE international conference on nano/micro engineered and molecular systems, Suzhou
go back to reference Xie B, Xing Y, Wang Y et al (2015a) A lateral differential resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. Sensors 15(9):24257–24268CrossRef Xie B, Xing Y, Wang Y et al (2015a) A lateral differential resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. Sensors 15(9):24257–24268CrossRef
go back to reference Xie B, Xing Y, Wang Y et al (2015b) Vacuum-packaged resonant pressure sensor with dual resonators for high sensitivity and linearity. Process Eng 120:194–199 Xie B, Xing Y, Wang Y et al (2015b) Vacuum-packaged resonant pressure sensor with dual resonators for high sensitivity and linearity. Process Eng 120:194–199
go back to reference Yang L, Su Y, Qiu AP et al (2013) Self-temperature compensation for high quality factor micro-machined gyroscope. Opt Precis Eng 11:2870–2876CrossRef Yang L, Su Y, Qiu AP et al (2013) Self-temperature compensation for high quality factor micro-machined gyroscope. Opt Precis Eng 11:2870–2876CrossRef
go back to reference Yoneoka S, Salvia JC, Bahl G et al (2010) Active electrostatic compensation of micromechanical resonators under random vibrations. IEEE J MEMS 19(5):1270–1272CrossRef Yoneoka S, Salvia JC, Bahl G et al (2010) Active electrostatic compensation of micromechanical resonators under random vibrations. IEEE J MEMS 19(5):1270–1272CrossRef
go back to reference Zhu L, Xie B, Xing YH et al (2016) A resonant pressure sensor capable of temperature compensation with least squares support vector machine. Procedia Eng 168:1731–1734CrossRef Zhu L, Xie B, Xing YH et al (2016) A resonant pressure sensor capable of temperature compensation with least squares support vector machine. Procedia Eng 168:1731–1734CrossRef
go back to reference Zook JD, Burns DW, Guckel H et al (1991) Resonant microbeam strain transducers. In: Proceedings of the 6th international conference on solid-state sensors and actuators, San Francisco Zook JD, Burns DW, Guckel H et al (1991) Resonant microbeam strain transducers. In: Proceedings of the 6th international conference on solid-state sensors and actuators, San Francisco
Metadata
Title
A Micromachined Silicon Resonant Pressure Sensor
Authors
Junbo Wang
Deyong Chen
Bo Xie
Jian Chen
Lin Zhu
Yulan Lu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5945-2_15