Skip to main content
Top
Published in:

17-08-2022

A Mixed Approach for Aggressive Political Discourse Analysis on Twitter

Authors: Javier Torregrosa, Sergio D’Antonio-Maceiras, Guillermo Villar-Rodríguez, Amir Hussain, Erik Cambria, David Camacho

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Political tensions have grown throughout Europe since the beginning of the new century. The consecutive crises led to the rise of different social movements in several countries, in which the political status quo changed. These changes included an increment of the different tensions underlying politics, as has been reported after many other political and economical crises during the twentieth century. This article proposes the study of the political discourse, and its underlying tension, during Madrid’s elections (Spain) in May 2021 by using a mixed approach. To demonstrate if an aggressive tone is used during the campaign, a mixed methodology approach is applied: quantitative computational techniques, related to natural language processing, are used to conduct a first general analysis of the information screened; then, these methods are used for detecting specific trends that can be later filtered and analyzed using a qualitative approach (content analysis), which is also conducted to extract insights about the information found. The main outcomes of this study show that the electoral campaign is not as negative as perceived by the citizens and that there was no relationship between the tone of the discourse and its dissemination. The analysis confirms that the most ideologically extreme parties tend to have a more aggressive language than the moderate ones. The content analysis carried out using our methodology showed that Twitter is used as a sentiment thermometer more than as a way of communicating concrete politics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
CIS (Centro de Investigaciones Sociológicas), Spanish Sociological Research Centre: https://​www.​cis.​es/​cis/​opencms/​EN/​index.​html
 
2
To avoid sorting these parties arbitrarily, this paper will structure the outcomes regarding each of them according to their established order in this survey, from left to right.
 
3
The association of the candidates’ names mentioned in the sections of this article with their political party can be found in Table 3.
 
6
NLTK, the Natural Language Toolkit: https://​www.​nltk.​org/​
 
7
Vallecas is a working-class district in the city of Madrid.
 
8
Although in Spain polarized positions can be traced back at least as far as the eighteenth century, here the reminiscences refer to the confrontation regarding the interpretation of the Spanish civil war that resulted in Franco’s dictatorship and, mainly, the transition to democracy in 1977. On one hand, the right block sees the war as a crusade against communism, a tragedy closed during the transition to democracy, and claims to look at the future and not to the past . On the other hand, especially for Podemos, this is still an open issue due to the lack of official condemnation of the dictatorship and public recognition of its victims. These visions are still present, polarizing both historical blocks [92, 93].
 
9
Acronym for ‘Menores No Acompañados’, or ‘Unaccompanied Minors’, immigrant minors who have no parents and adults that are responsible for them in Spain.
 
10
This included, as stated on its web (https://​protegemadrid.​es/​), social and job insecurity, a problem with unsupervised immigrant minors, the veto of fundamental rights due to the COVID pandemic and the economic policy of the central left-wing government.
 
Literature
1.
go back to reference Gasiorowski MJ. Economic crisis and political regime change: an event history analysis. Am Polit Sci Rev. 1995;89(4):882–97.CrossRef Gasiorowski MJ. Economic crisis and political regime change: an event history analysis. Am Polit Sci Rev. 1995;89(4):882–97.CrossRef
2.
go back to reference Sampedro V, Lobera J. The Spanish 15-M Movement: a consensual dissent? J Span Cult Stud. 2014;15(1–2):61–80.CrossRef Sampedro V, Lobera J. The Spanish 15-M Movement: a consensual dissent? J Span Cult Stud. 2014;15(1–2):61–80.CrossRef
3.
go back to reference Romanos E, Sádaba I. De la calle a las instituciones a través de las apps: consecuencias políticas de las prácticas digitales en el 15M. Rev Int Sociol. 2016;74(4):e048–e048.CrossRef Romanos E, Sádaba I. De la calle a las instituciones a través de las apps: consecuencias políticas de las prácticas digitales en el 15M. Rev Int Sociol. 2016;74(4):e048–e048.CrossRef
4.
go back to reference Orriols L, Cordero G. The breakdown of the Spanish two-party system: the upsurge of Podemos and Ciudadanos in the 2015 general election. South European Society and Politics. 2016;21(4):469–92.CrossRef Orriols L, Cordero G. The breakdown of the Spanish two-party system: the upsurge of Podemos and Ciudadanos in the 2015 general election. South European Society and Politics. 2016;21(4):469–92.CrossRef
10.
go back to reference López-García G, Pavía JM. Political communication in election processes: an overview. Contemporary Social Science. 2019;14(1):1–13.CrossRef López-García G, Pavía JM. Political communication in election processes: an overview. Contemporary Social Science. 2019;14(1):1–13.CrossRef
11.
go back to reference Chadwick A. The hybrid media system: Politics and power. Oxford University Press; 2017.CrossRef Chadwick A. The hybrid media system: Politics and power. Oxford University Press; 2017.CrossRef
12.
go back to reference Freelon D, Karpf D. Of big birds and bayonets: hybrid Twitter interactivity in the 2012 presidential debates. Inf Commun Soc. 2015;18(4):390–406.CrossRef Freelon D, Karpf D. Of big birds and bayonets: hybrid Twitter interactivity in the 2012 presidential debates. Inf Commun Soc. 2015;18(4):390–406.CrossRef
13.
go back to reference Russell Neuman W, Guggenheim L, Mo Jang S, Bae SY. The dynamics of public attention: agenda-setting theory meets big data. J Commun. 2014;64(2):193–214.CrossRef Russell Neuman W, Guggenheim L, Mo Jang S, Bae SY. The dynamics of public attention: agenda-setting theory meets big data. J Commun. 2014;64(2):193–214.CrossRef
14.
go back to reference Moon SJ, Hadley P. Routinizing a new technology in the newsroom: Twitter as a news source in mainstream media. J Broadcast Electron Media. 2014;58(2):289–305.CrossRef Moon SJ, Hadley P. Routinizing a new technology in the newsroom: Twitter as a news source in mainstream media. J Broadcast Electron Media. 2014;58(2):289–305.CrossRef
16.
go back to reference Alonso-Muñoz L, Casero-Ripollés A. Political agenda on Twitter during the, Spanish elections: issues, strategies, and users’ responses. Commun Soc. 2016;2018:7–23. Alonso-Muñoz L, Casero-Ripollés A. Political agenda on Twitter during the, Spanish elections: issues, strategies, and users’ responses. Commun Soc. 2016;2018:7–23.
17.
go back to reference Nai A, Schemeil Y, Marie JL. Anxiety, sophistication, and resistance to persuasion: evidence from a quasi-experimental survey on global climate change. Polit Psychol. 2017;38(1):137–56.CrossRef Nai A, Schemeil Y, Marie JL. Anxiety, sophistication, and resistance to persuasion: evidence from a quasi-experimental survey on global climate change. Polit Psychol. 2017;38(1):137–56.CrossRef
18.
go back to reference Galtung J, Ruge MH. The structure of foreign news: the presentation of the Congo, Cuba and Cyprus crises in four Norwegian newspapers. J Peace Res. 1965;2(1):64–90.CrossRef Galtung J, Ruge MH. The structure of foreign news: the presentation of the Congo, Cuba and Cyprus crises in four Norwegian newspapers. J Peace Res. 1965;2(1):64–90.CrossRef
19.
go back to reference Haselmayer M, Meyer TM, Wagner M. Fighting for attention: media coverage of negative campaign messages. Party Polit. 2019;25(3):412–23.CrossRef Haselmayer M, Meyer TM, Wagner M. Fighting for attention: media coverage of negative campaign messages. Party Polit. 2019;25(3):412–23.CrossRef
20.
go back to reference Gross JH, Johnson KT. Twitter taunts and tirades: negative campaigning in the age of Trump. PS: Political Science & Politics. 2016;49(4):748–754. Gross JH, Johnson KT. Twitter taunts and tirades: negative campaigning in the age of Trump. PS: Political Science & Politics. 2016;49(4):748–754.
21.
go back to reference Enli G. Twitter as arena for the authentic outsider: exploring the social media campaigns of Trump and Clinton in the 2016 US presidential election. Eur J Commun. 2017;32(1):50–61.CrossRef Enli G. Twitter as arena for the authentic outsider: exploring the social media campaigns of Trump and Clinton in the 2016 US presidential election. Eur J Commun. 2017;32(1):50–61.CrossRef
22.
go back to reference Klein N. This changes everything: capitalism vs. the climate. Simon and Schuster; 2015. Klein N. This changes everything: capitalism vs. the climate. Simon and Schuster; 2015.
23.
go back to reference Susanto Y, Cambria E, Ng BC, Hussain A. Ten years of sentic computing. Cogn Comput. 2022;14(1):5–23.CrossRef Susanto Y, Cambria E, Ng BC, Hussain A. Ten years of sentic computing. Cogn Comput. 2022;14(1):5–23.CrossRef
25.
go back to reference Al-Ghadir AI, Azmi AM, Hussain A. A novel approach to stance detection in social media tweets by fusing ranked lists and sentiments. Information Fusion. 2021;67:29–40.CrossRef Al-Ghadir AI, Azmi AM, Hussain A. A novel approach to stance detection in social media tweets by fusing ranked lists and sentiments. Information Fusion. 2021;67:29–40.CrossRef
26.
go back to reference Shah D, Li Y, Hadaegh A. Twitter based sentiment analysis of each presidential candidate using long short-term memory. Int J Comput Sci Secur. 2021;15:87–96. Shah D, Li Y, Hadaegh A. Twitter based sentiment analysis of each presidential candidate using long short-term memory. Int J Comput Sci Secur. 2021;15:87–96.
27.
go back to reference Gerstlé J, Nai A. Negativity, emotionality and populist rhetoric in election campaigns worldwide, and their effects on media attention and electoral success. Eur J Commun. 2019;34(4):410–44.CrossRef Gerstlé J, Nai A. Negativity, emotionality and populist rhetoric in election campaigns worldwide, and their effects on media attention and electoral success. Eur J Commun. 2019;34(4):410–44.CrossRef
28.
go back to reference Haselmayer M. Candidates rather than context shape campaign sentiment in French Presidential Elections (1965–2017). French Politics. 2021:1–27. Haselmayer M. Candidates rather than context shape campaign sentiment in French Presidential Elections (1965–2017). French Politics. 2021:1–27.
30.
go back to reference Goffman E. Frame analysis: an essay on the organization of experience. Harvard University Press; 1974. Goffman E. Frame analysis: an essay on the organization of experience. Harvard University Press; 1974.
31.
go back to reference Van Dijk TA, et al. What is political discourse analysis. Belgian Journal of Linguistics. 1997;11(1):11–52.CrossRef Van Dijk TA, et al. What is political discourse analysis. Belgian Journal of Linguistics. 1997;11(1):11–52.CrossRef
32.
go back to reference Van Dijk TA. Ideology and discourse analysis. Journal of Political Ideologies. 2006;11(2):115–40.CrossRef Van Dijk TA. Ideology and discourse analysis. Journal of Political Ideologies. 2006;11(2):115–40.CrossRef
33.
go back to reference Hague R, Harrop M. Comparative government and politics, vol. 6. Springer; 2004. Hague R, Harrop M. Comparative government and politics, vol. 6. Springer; 2004.
34.
go back to reference Goffman E, et al. The presentation of self in everyday life, vol. 21. Harmondsworth London; 1978. Goffman E, et al. The presentation of self in everyday life, vol. 21. Harmondsworth London; 1978.
35.
go back to reference Lakoff G. The all new don’t think of an elephant!: Know your values and frame the debate. Chelsea Green Publishing; 2014. Lakoff G. The all new don’t think of an elephant!: Know your values and frame the debate. Chelsea Green Publishing; 2014.
36.
go back to reference Snow DA, Benford RD, et al. Ideology, frame resonance, and participant mobilization. International Social Movement Research. 1988;1(1):197–217. Snow DA, Benford RD, et al. Ideology, frame resonance, and participant mobilization. International Social Movement Research. 1988;1(1):197–217.
38.
go back to reference Hussain A, Cambria E. Semi-supervised learning for big social data analysis. Neurocomputing. 2018;275:1662–73.CrossRef Hussain A, Cambria E. Semi-supervised learning for big social data analysis. Neurocomputing. 2018;275:1662–73.CrossRef
39.
go back to reference Poria S, Gelbukh A, Hussain A, Howard N, Das D, Bandyopadhyay S. Enhanced SenticNet with affective labels for concept-based opinion mining. IEEE Intell Syst. 2013;28(2):31–8.CrossRef Poria S, Gelbukh A, Hussain A, Howard N, Das D, Bandyopadhyay S. Enhanced SenticNet with affective labels for concept-based opinion mining. IEEE Intell Syst. 2013;28(2):31–8.CrossRef
40.
go back to reference Cambria E, Hussain A, Durrani T, Havasi C, Eckl C, Munro J. Sentic computing for patient centered applications. In: IEEE 10th International Conference on Signal Processing Proceedings. IEEE; 2010. p. 1279–1282. Cambria E, Hussain A, Durrani T, Havasi C, Eckl C, Munro J. Sentic computing for patient centered applications. In: IEEE 10th International Conference on Signal Processing Proceedings. IEEE; 2010. p. 1279–1282.
41.
go back to reference Satapathy R, Pardeshi S, Cambria E. Polarity and Subjectivity detection with multitask learning and BERT embedding. arXiv preprint arXiv:220105363. 2022. Satapathy R, Pardeshi S, Cambria E. Polarity and Subjectivity detection with multitask learning and BERT embedding. arXiv preprint arXiv:​220105363. 2022.
42.
go back to reference Hussain Z, Sheikh Z, Tahir A, Dashtipour K, Gogate M, Sheikh A, et al. Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: observational study. JMIR Public Health Surveill. 2022. Hussain Z, Sheikh Z, Tahir A, Dashtipour K, Gogate M, Sheikh A, et al. Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: observational study. JMIR Public Health Surveill. 2022.
43.
go back to reference Tumasjan A, Sprenger T, Sandner P, Welpe I. Predicting elections with twitter: what 140 characters reveal about political sentiment. In: Proceedings of the International AAAI Conference on Web and Social Media. vol.4; 2010. p. 178–185. Tumasjan A, Sprenger T, Sandner P, Welpe I. Predicting elections with twitter: what 140 characters reveal about political sentiment. In: Proceedings of the International AAAI Conference on Web and Social Media. vol.4; 2010. p. 178–185.
44.
go back to reference Belcastro L, Cantini R, Marozzo F, Talia D, Trunfio P. Learning political polarization on social media using neural networks. IEEE Access. 2020;8:47177–87.CrossRef Belcastro L, Cantini R, Marozzo F, Talia D, Trunfio P. Learning political polarization on social media using neural networks. IEEE Access. 2020;8:47177–87.CrossRef
45.
go back to reference Khatua A, Khatua A, Cambria E. Predicting political sentiments of voters from Twitter in multi-party contexts. Appl Soft Comput. 2020;97:106743. Khatua A, Khatua A, Cambria E. Predicting political sentiments of voters from Twitter in multi-party contexts. Appl Soft Comput. 2020;97:106743.
46.
go back to reference Robles JM, Velez D, DeMarco S, Rodríguez JT, Gomez D. Affective homogeneity in the Spanish general election debate. a comparative analysis of social networks political agents. Inf Commun Soc. 2020;23(2):216–233. Robles JM, Velez D, DeMarco S, Rodríguez JT, Gomez D. Affective homogeneity in the Spanish general election debate. a comparative analysis of social networks political agents. Inf Commun Soc. 2020;23(2):216–233.
47.
go back to reference Ross AS, Caldwell D. ‘Going negative’: an appraisal analysis of the rhetoric of Donald Trump on Twitter. Lang Commun. 2020;70:13–27.CrossRef Ross AS, Caldwell D. ‘Going negative’: an appraisal analysis of the rhetoric of Donald Trump on Twitter. Lang Commun. 2020;70:13–27.CrossRef
48.
go back to reference Torregrosa J, Panizo-Lledot Á, Bello-Orgaz G, Camacho D. Analyzing the relationship between relevance and extremist discourse in an alt-right network on Twitter. Soc Netw Anal Min. 2020;10(1):1–17.CrossRef Torregrosa J, Panizo-Lledot Á, Bello-Orgaz G, Camacho D. Analyzing the relationship between relevance and extremist discourse in an alt-right network on Twitter. Soc Netw Anal Min. 2020;10(1):1–17.CrossRef
49.
go back to reference Martín A, Huertas-Tato J, Huertas-García Á, Villar-Rodríguez G, Camacho D. FacTeR-Check: Semi-automated fact-checking through semantic similarity and natural language inference. arXiv preprint arXiv:211014532. 2021. Martín A, Huertas-Tato J, Huertas-García Á, Villar-Rodríguez G, Camacho D. FacTeR-Check: Semi-automated fact-checking through semantic similarity and natural language inference. arXiv preprint arXiv:​211014532. 2021.
50.
go back to reference Huertas-García Á, Huertas-Tato J, Martín A, Camacho D. Countering misinformation through semantic-aware multilingual models. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer, Cham; 2021. p. 312–323. Huertas-García Á, Huertas-Tato J, Martín A, Camacho D. Countering misinformation through semantic-aware multilingual models. In: International Conference on Intelligent Data Engineering and Automated Learning. Springer, Cham; 2021. p. 312–323.
51.
go back to reference Dubey AD. Twitter sentiment analysis during COVID-19 outbreak. Available at SSRN 3572023. 2020. Dubey AD. Twitter sentiment analysis during COVID-19 outbreak. Available at SSRN 3572023. 2020.
52.
go back to reference Garcia K, Berton L. Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Applied Soft Computing. 2021;101:107057. Garcia K, Berton L. Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Applied Soft Computing. 2021;101:107057.
53.
go back to reference Vilares D, Alonso MA. A review on political analysis and social media. Procesamiento Del Lenguaje Natural. 2016;56:13–23. Vilares D, Alonso MA. A review on political analysis and social media. Procesamiento Del Lenguaje Natural. 2016;56:13–23.
54.
go back to reference Duarte N, Llanso E, Loup AC. Mixed messages? The limits of automated social media content analysis. In: FAT; 2018. p. 106. Duarte N, Llanso E, Loup AC. Mixed messages? The limits of automated social media content analysis. In: FAT; 2018. p. 106.
56.
go back to reference Turner SF, Cardinal LB, Burton RM. Research design for mixed methods: a triangulation-based framework and roadmap. Organ Res Methods. 2017;20(2):243–67.CrossRef Turner SF, Cardinal LB, Burton RM. Research design for mixed methods: a triangulation-based framework and roadmap. Organ Res Methods. 2017;20(2):243–67.CrossRef
57.
go back to reference Krippendorff K. Content analysis: an introduction to its methodology (2nd Thousand Oaks). CA: Sage Publications; 2004. Krippendorff K. Content analysis: an introduction to its methodology (2nd Thousand Oaks). CA: Sage Publications; 2004.
58.
go back to reference Zamith R, Lewis SC. Content analysis and the algorithmic coder: what computational social science means for traditional modes of media analysis. Ann Am Acad Pol Soc Sci. 2015;659(1):307–18.CrossRef Zamith R, Lewis SC. Content analysis and the algorithmic coder: what computational social science means for traditional modes of media analysis. Ann Am Acad Pol Soc Sci. 2015;659(1):307–18.CrossRef
59.
go back to reference Denzin NK. Triangulation 2.0. J Mixed Methods Res. 2012;6(2):80–88. Denzin NK. Triangulation 2.0. J Mixed Methods Res. 2012;6(2):80–88.
60.
go back to reference Caracelli VJ, Greene JC. Data analysis strategies for mixed-method evaluation designs. Educ Evavl Policy Anal. 1993;15(2):195–207.CrossRef Caracelli VJ, Greene JC. Data analysis strategies for mixed-method evaluation designs. Educ Evavl Policy Anal. 1993;15(2):195–207.CrossRef
61.
go back to reference Caruth GD. Demystifying mixed methods research design: a review of the literature. Online Submission. 2013;3(2):112–22. Caruth GD. Demystifying mixed methods research design: a review of the literature. Online Submission. 2013;3(2):112–22.
62.
go back to reference Hillard D, Purpura S, Wilkerson J. Computer-assisted topic classification for mixed-methods social science research. J Inform Tech Polit. 2008;4(4):31–46.CrossRef Hillard D, Purpura S, Wilkerson J. Computer-assisted topic classification for mixed-methods social science research. J Inform Tech Polit. 2008;4(4):31–46.CrossRef
64.
go back to reference Schneiker A, Dau M, Joachim J, Martin M, Lange H. How to analyze social media? Assessing the promise of mixed-methods designs for studying the Twitter feeds of PMSCs. Int Stud Perspect. 2019;20(2):188–200.CrossRef Schneiker A, Dau M, Joachim J, Martin M, Lange H. How to analyze social media? Assessing the promise of mixed-methods designs for studying the Twitter feeds of PMSCs. Int Stud Perspect. 2019;20(2):188–200.CrossRef
65.
go back to reference Kreis R. # refugeesnotwelcome: anti-refugee discourse on Twitter. Discourse Commun. 2017;11(5):498–514.CrossRef Kreis R. # refugeesnotwelcome: anti-refugee discourse on Twitter. Discourse Commun. 2017;11(5):498–514.CrossRef
66.
go back to reference Chang T, DeJonckheere M, Vydiswaran VV, Li J, Buis LR, Guetterman TC. Accelerating mixed methods research with natural language processing of big text data. J Mixed Methods Res. 2021:15586898211021196. Chang T, DeJonckheere M, Vydiswaran VV, Li J, Buis LR, Guetterman TC. Accelerating mixed methods research with natural language processing of big text data. J Mixed Methods Res. 2021:15586898211021196.
67.
go back to reference Baviera T, Calvo D, Llorca-Abad G. Mediatisation in Twitter: an exploratory analysis of the 2015 Spanish general election. J Int Commun. 2019;25(2):275–300.CrossRef Baviera T, Calvo D, Llorca-Abad G. Mediatisation in Twitter: an exploratory analysis of the 2015 Spanish general election. J Int Commun. 2019;25(2):275–300.CrossRef
68.
go back to reference Giménez M, Baviera T, Llorca G, Gámir J, Calvo D, Rosso P, et al. Overview of the 1st classification of Spanish election tweets task at ibereval 2017. In: Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017), Murcia, Spain, September. vol. 19. 2017. p. 1–14. Giménez M, Baviera T, Llorca G, Gámir J, Calvo D, Rosso P, et al. Overview of the 1st classification of Spanish election tweets task at ibereval 2017. In: Proceedings of the Second Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2017), Murcia, Spain, September. vol. 19. 2017. p. 1–14.
69.
go back to reference Cambria E, Das D, Bandyopadhyay S, Feraco A. Affective computing and sentiment analysis. In: A Practical Guide to Sentiment Analysis. Springer; 2017. p. 1–10. Cambria E, Das D, Bandyopadhyay S, Feraco A. Affective computing and sentiment analysis. In: A Practical Guide to Sentiment Analysis. Springer; 2017. p. 1–10.
70.
go back to reference Hearst MA. Untangling text data mining. In: Proceedings of the 37th Annual meeting of the Association for Computational Linguistics; 1999. p. 3–10. Hearst MA. Untangling text data mining. In: Proceedings of the 37th Annual meeting of the Association for Computational Linguistics; 1999. p. 3–10.
71.
go back to reference Bodrunova SS. When context matters. Analyzing conflicts with the use of big textual corpora from Russian and international social media. Partecipazione e Conflitto. 2018;11(2):497–510. Bodrunova SS. When context matters. Analyzing conflicts with the use of big textual corpora from Russian and international social media. Partecipazione e Conflitto. 2018;11(2):497–510.
72.
go back to reference Gianfreda S. Using a mixed-method approach to examine party positioning on immigration and the European Union in Parliamentary Proceedings. SAGE Publications Ltd; 2019. Gianfreda S. Using a mixed-method approach to examine party positioning on immigration and the European Union in Parliamentary Proceedings. SAGE Publications Ltd; 2019.
73.
74.
go back to reference Shah DV, Cappella JN, Neuman WR. Big data, digital media, and computational social science: possibilities and perils. Ann Am Acad Pol Soc Sci. 2015;659(1):6–13.CrossRef Shah DV, Cappella JN, Neuman WR. Big data, digital media, and computational social science: possibilities and perils. Ann Am Acad Pol Soc Sci. 2015;659(1):6–13.CrossRef
75.
go back to reference Cambria E, Xing F, Thelwall M, Welsch R. Sentiment analysis as a multidisciplinary research area. IEEE Transactions on Artificial Intelligence. 2022;3(2):1–3. Cambria E, Xing F, Thelwall M, Welsch R. Sentiment analysis as a multidisciplinary research area. IEEE Transactions on Artificial Intelligence. 2022;3(2):1–3.
76.
go back to reference Elayan S, Sykora M, Jackson T. “His tweets speak for themselves”: an analysis of Donald Trump’s Twitter behaviour. International Journal of Interdisciplinary Civic and Political Studies. 2020;15(1):11–35. Elayan S, Sykora M, Jackson T. “His tweets speak for themselves”: an analysis of Donald Trump’s Twitter behaviour. International Journal of Interdisciplinary Civic and Political Studies. 2020;15(1):11–35.
77.
go back to reference Meduru M, Mahimkar A, Subramanian K, Padiya PY, Gunjgur PN. Opinion mining using twitter feeds for political analysis. Int J Comput(IJC). 2017;25(1):116–123. Meduru M, Mahimkar A, Subramanian K, Padiya PY, Gunjgur PN. Opinion mining using twitter feeds for political analysis. Int J Comput(IJC). 2017;25(1):116–123.
78.
go back to reference Recuero R, Zago G, Bastos MT, Araújo R. Hashtags functions in the protests across Brazil. Sage Open. 2015;5(2):2158244015586000.CrossRef Recuero R, Zago G, Bastos MT, Araújo R. Hashtags functions in the protests across Brazil. Sage Open. 2015;5(2):2158244015586000.CrossRef
79.
go back to reference Bruns A, Stieglitz S. Towards more systematic Twitter analysis: metrics for tweeting activities. Int J Soc Res Methodol. 2013;16(2):91–108.CrossRef Bruns A, Stieglitz S. Towards more systematic Twitter analysis: metrics for tweeting activities. Int J Soc Res Methodol. 2013;16(2):91–108.CrossRef
80.
go back to reference González-Bailón S, Borge-Holthoefer J, Moreno Y. Broadcasters and hidden influentials in online protest diffusion. Am Behav Sci. 2013;57(7):943–65.CrossRef González-Bailón S, Borge-Holthoefer J, Moreno Y. Broadcasters and hidden influentials in online protest diffusion. Am Behav Sci. 2013;57(7):943–65.CrossRef
81.
go back to reference Barberá P, Jost JT, Nagler J, Tucker JA, Bonneau R. Tweeting from left to right: is online political communication more than an echo chamber? Psychol Sci. 2015;26(10):1531–42.CrossRef Barberá P, Jost JT, Nagler J, Tucker JA, Bonneau R. Tweeting from left to right: is online political communication more than an echo chamber? Psychol Sci. 2015;26(10):1531–42.CrossRef
82.
go back to reference Tymann K, Lutz M, Palsbröker P, Gips C. GerVADER - A German adaptation of the VADER sentiment analysis tool for social media texts. In: LWDA. 2019. Tymann K, Lutz M, Palsbröker P, Gips C. GerVADER - A German adaptation of the VADER sentiment analysis tool for social media texts. In: LWDA. 2019.
83.
go back to reference Cambria E, Schuller B, Xia Y, Havasi C. New avenues in opinion mining and sentiment analysis. IEEE Intell Syst. 2013;28(2):15–21.CrossRef Cambria E, Schuller B, Xia Y, Havasi C. New avenues in opinion mining and sentiment analysis. IEEE Intell Syst. 2013;28(2):15–21.CrossRef
84.
go back to reference Sampedro V, Durán R, Seoane F, Farné A. From invisibility to the public sphere: the hybrid media strategy of a new party (Podemos, Spain, 2014–2015). Int J Commun. 2021;15:26. Sampedro V, Durán R, Seoane F, Farné A. From invisibility to the public sphere: the hybrid media strategy of a new party (Podemos, Spain, 2014–2015). Int J Commun. 2021;15:26.
85.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Inf Proces Syst. 2017;30. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Inf Proces Syst. 2017;30.
86.
go back to reference Kumar A, Cambria E, Transformer-Based Trueman TE. Representations bidirectional encoder, for emotion detection from text. In: IEEE Symposium Series on Computational Intelligence (SSCI). IEEE 2021;2021:1–6. Kumar A, Cambria E, Transformer-Based Trueman TE. Representations bidirectional encoder, for emotion detection from text. In: IEEE Symposium Series on Computational Intelligence (SSCI). IEEE 2021;2021:1–6.
87.
go back to reference Bello-Orgaz G, Jung JJ, Camacho D. Social big data: recent achievements and new challenges. Information Fusion. 2016;28:45–59.CrossRef Bello-Orgaz G, Jung JJ, Camacho D. Social big data: recent achievements and new challenges. Information Fusion. 2016;28:45–59.CrossRef
88.
go back to reference Camacho D, Panizo-LLedot A, Bello-Orgaz G, Gonzalez-Pardo A, Cambria E. The four dimensions of social network analysis: an overview of research methods, applications, and software tools. Information Fusion. 2020;63:88–120.CrossRef Camacho D, Panizo-LLedot A, Bello-Orgaz G, Gonzalez-Pardo A, Cambria E. The four dimensions of social network analysis: an overview of research methods, applications, and software tools. Information Fusion. 2020;63:88–120.CrossRef
89.
go back to reference Camacho D, Luzón MV, Cambria E. New research methods & algorithms in social network analysis. Elsevier; 2021.CrossRef Camacho D, Luzón MV, Cambria E. New research methods & algorithms in social network analysis. Elsevier; 2021.CrossRef
90.
go back to reference Barbieri F, Anke LE, Camacho-Collados J. Xlm-t: A multilingual language model toolkit for twitter. arXiv preprint arXiv:210412250. 2021. Barbieri F, Anke LE, Camacho-Collados J. Xlm-t: A multilingual language model toolkit for twitter. arXiv preprint arXiv:​210412250. 2021.
91.
go back to reference McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:180203426. 2018. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:​180203426. 2018.
92.
go back to reference Boyd CP. The politics of history and memory in democratic Spain. Ann Am Acad Pol Soc Sci. 2008;617(1):133–48.CrossRef Boyd CP. The politics of history and memory in democratic Spain. Ann Am Acad Pol Soc Sci. 2008;617(1):133–48.CrossRef
93.
go back to reference Álvarez Junco J. España: el peso del estereotipo. Claves de Razón Práctica. 1994;48:2–10. Álvarez Junco J. España: el peso del estereotipo. Claves de Razón Práctica. 1994;48:2–10.
94.
go back to reference Oliver JE, Rahn WM. Rise of the Trumpenvolk: populism in the 2016 election. Ann Am Acad Pol Soc Sci. 2016;667(1):189–206.CrossRef Oliver JE, Rahn WM. Rise of the Trumpenvolk: populism in the 2016 election. Ann Am Acad Pol Soc Sci. 2016;667(1):189–206.CrossRef
95.
go back to reference Torregrosa J, Bello-Orgaz G, Martinez-Camara E, DelSer J, Camacho D. A survey on extremism analysis using Natural Language Processing. arXiv preprint arXiv:210404069. 2021. Torregrosa J, Bello-Orgaz G, Martinez-Camara E, DelSer J, Camacho D. A survey on extremism analysis using Natural Language Processing. arXiv preprint arXiv:​210404069. 2021.
Metadata
Title
A Mixed Approach for Aggressive Political Discourse Analysis on Twitter
Authors
Javier Torregrosa
Sergio D’Antonio-Maceiras
Guillermo Villar-Rodríguez
Amir Hussain
Erik Cambria
David Camacho
Publication date
17-08-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10048-w

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner