Skip to main content
Top

2013 | OriginalPaper | Chapter

4. A Mobility-Based Time Reference

Authors : Fabio Sebastiano, Lucien J. Breems, Kofi A. A. Makinwa

Published in: Mobility-based Time References for Wireless Sensor Networks

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As shown in Chap. 2, Wireless Sensor Network (WSN) nodes must be equipped with fully integrated time references with an accuracy of the order of 1% and a power consumption lower than 100 μW. Recently, much work has been devoted to implementing fully integrated time references in standard microelectronic technologies. As shown in Chap. 3, the inaccuracy of several of them is low enough for WSN applications, but they need either a too high power consumption or a very accurate process characterization, with a consequent limitation of their practical use.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
A mobility-based time reference is presented in [1] but measurement results from only one sample are reported, which do not give any information about the spread.
 
2
Geometric factors in (4.27) (W 1, L 1 and the area of capacitors C A and C B ) are also affected by process spread. However, their effect on T osc can be neglected if sufficiently large devices are employed.
 
3
An external opamp (LTC1053) is used only for testing purpose.
 
4
Note that a pad with large ESD protection diodes and an external opamp are connected to one end of R 1. The parasitic current through R 1 is the sum of the leakage currents of the ESD diodes and of the input bias current of the opamp.
 
5
The area labelled as “capacitors” in Fig. 4.10 also contains also transistors M 1 and M 3 of the current reference, which are required to match MOS capacitors C A and C B .
 
6
The values used for αμ were obtained at − 40 ∘ C and 85 ∘ C from the slope of the average frequency characteristic in Fig. 4.14.
 
Literature
1.
go back to reference Blauschild R (1994) An integrated time reference. ISSCC Dig. of Tech. Papers, pp 56–57 Blauschild R (1994) An integrated time reference. ISSCC Dig. of Tech. Papers, pp 56–57
2.
go back to reference Tsividis Y (2003) Operation and modeling of the Mos transistor, 2nd edn. Oxford University Press, New York, p 12 Tsividis Y (2003) Operation and modeling of the Mos transistor, 2nd edn. Oxford University Press, New York, p 12
3.
go back to reference Tsividis YP (1994) Integrated continuos-time filter design – an overview. IEEE J Solid State Circ 29(3):166–176CrossRef Tsividis YP (1994) Integrated continuos-time filter design – an overview. IEEE J Solid State Circ 29(3):166–176CrossRef
4.
go back to reference Sansen W, Op’t Eynde F, Steyaert M (1988) A CMOS temperature-compensated current reference. IEEE J Solid State Circ 23(3):821–824CrossRef Sansen W, Op’t Eynde F, Steyaert M (1988) A CMOS temperature-compensated current reference. IEEE J Solid State Circ 23(3):821–824CrossRef
5.
go back to reference Jeon D, Burk D (1989) MOSFET electron inversion layer mobilities-a physically based semi-empirical model for a wide temperature range. IEEE Trans Electron Dev 36(8):1456–1463. DOI 10.1109/16.30959CrossRef Jeon D, Burk D (1989) MOSFET electron inversion layer mobilities-a physically based semi-empirical model for a wide temperature range. IEEE Trans Electron Dev 36(8):1456–1463. DOI 10.1109/16.30959CrossRef
6.
go back to reference Ghani T, Mistry K, Packan P, Thompson S, Stettler M, Tyagi S, Bohr M (2000) Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors. In: 2000 Symposium on VLSI Circuits Dig. Tech. Papers, pp 174–175. DOI 10.1109/VLSIT.2000.852814 Ghani T, Mistry K, Packan P, Thompson S, Stettler M, Tyagi S, Bohr M (2000) Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors. In: 2000 Symposium on VLSI Circuits Dig. Tech. Papers, pp 174–175. DOI 10.1109/VLSIT.2000.852814
7.
go back to reference Lo SH, Buchanan D, Taur Y, Wang W (1997) Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Dev Lett 18(5):209–211. DOI 10.1109/55.568766CrossRef Lo SH, Buchanan D, Taur Y, Wang W (1997) Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Dev Lett 18(5):209–211. DOI 10.1109/55.568766CrossRef
8.
go back to reference Mukhopadhyay S, Neau C, Cakici RT, Agarwal A, Kim CH, Roy K (2003) Gate leakage reduction for scaled devices using transistor stacking. IEEE Trans VLSI Syst 11(4):716–730CrossRef Mukhopadhyay S, Neau C, Cakici RT, Agarwal A, Kim CH, Roy K (2003) Gate leakage reduction for scaled devices using transistor stacking. IEEE Trans VLSI Syst 11(4):716–730CrossRef
9.
go back to reference O’Halloran M, Sarpeshkar R (2004) A 10-nW 12-bit accurate analog storage cell with 10-aA leakage. IEEE J Solid State Circ 39(11):1985–1996. DOI 10.1109/JSSC.2004. 835817CrossRef O’Halloran M, Sarpeshkar R (2004) A 10-nW 12-bit accurate analog storage cell with 10-aA leakage. IEEE J Solid State Circ 39(11):1985–1996. DOI 10.1109/JSSC.2004. 835817CrossRef
10.
go back to reference Wang TJ, Ko CH, Chang SJ, Wu SL, Kuan TM, Lee WC (2008) The effects of mechanical uniaxial stress on junction leakage in nanoscale CMOSFETs. IEEE Trans Electron Dev 55(2):572–577. DOI 10.1109/TED.2007.912363CrossRef Wang TJ, Ko CH, Chang SJ, Wu SL, Kuan TM, Lee WC (2008) The effects of mechanical uniaxial stress on junction leakage in nanoscale CMOSFETs. IEEE Trans Electron Dev 55(2):572–577. DOI 10.1109/TED.2007.912363CrossRef
11.
go back to reference Sedra AS, Smith KC (1998) Microelectronics circuits, 4th edn. Oxford University Press, New York Sedra AS, Smith KC (1998) Microelectronics circuits, 4th edn. Oxford University Press, New York
12.
go back to reference Tsividis Y (2003) Operation and modeling of the MOS transistor, 2nd edn. Oxford University Press, New York, NY Tsividis Y (2003) Operation and modeling of the MOS transistor, 2nd edn. Oxford University Press, New York, NY
13.
go back to reference Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2009) A low-voltage mobility-based frequency reference for crystal-less ULP radios. IEEE J Solid State Circ 44(7):2002–2009CrossRef Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2009) A low-voltage mobility-based frequency reference for crystal-less ULP radios. IEEE J Solid State Circ 44(7):2002–2009CrossRef
14.
go back to reference Annema AJ, Nauta B, van Langevelde R, Tuinhout H (2005) Analog circuits in ultra-deep-submicron CMOS. IEEE J Solid State Circ 40(1):132–143. DOI 10.1109/ JSSC.2004.837247CrossRef Annema AJ, Nauta B, van Langevelde R, Tuinhout H (2005) Analog circuits in ultra-deep-submicron CMOS. IEEE J Solid State Circ 40(1):132–143. DOI 10.1109/ JSSC.2004.837247CrossRef
15.
go back to reference Gregor R (1992) On the relationship between topography and transistor matching in an analog CMOS technology. IEEE Trans Electron Dev 39(2):275–282CrossRef Gregor R (1992) On the relationship between topography and transistor matching in an analog CMOS technology. IEEE Trans Electron Dev 39(2):275–282CrossRef
16.
go back to reference Tuinhout H, Vertregt M (1997) Test structures for investigation of metal coverage effects on mosfet matching. In: Proceedings of IEEE International Conference on Microelectronic Test Structures, ICMTS 1997, pp 179–183. DOI 10.1109/ICMTS. 1997.589386 Tuinhout H, Vertregt M (1997) Test structures for investigation of metal coverage effects on mosfet matching. In: Proceedings of IEEE International Conference on Microelectronic Test Structures, ICMTS 1997, pp 179–183. DOI 10.1109/ICMTS. 1997.589386
17.
go back to reference Tuinhout H, Vertregt M (2001) Characterization of systematic MOSFET current factor mismatch caused by metal CMP dummy structures. IEEE Trans Semicond Manuf 14(4):302–310. DOI 10.1109/66.964317CrossRef Tuinhout H, Vertregt M (2001) Characterization of systematic MOSFET current factor mismatch caused by metal CMP dummy structures. IEEE Trans Semicond Manuf 14(4):302–310. DOI 10.1109/66.964317CrossRef
18.
go back to reference Bakker A, Huijsing J (1996) Micropower CMOS temperature sensor with digital output. IEEE J Solid State Circ 31(7):933–937CrossRef Bakker A, Huijsing J (1996) Micropower CMOS temperature sensor with digital output. IEEE J Solid State Circ 31(7):933–937CrossRef
19.
go back to reference Aita AL, Pertijs MA, Makinwa KAA, Huijsing JH (2009) A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0. 25 ∘ C (3σ) from − 70 to 130  ∘ C. In: ISSCC Dig. of Tech. Papers Aita AL, Pertijs MA, Makinwa KAA, Huijsing JH (2009) A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0. 25 ∘ C (3σ) from − 70 to 130  ∘ C. In: ISSCC Dig. of Tech. Papers
20.
go back to reference Liu C, McNeill J (2004) Jitter in oscillators with 1/f noise sources. Proc ISCAS 1:I–773–6. DOI 10.1109/ISCAS.2004.1328309 Liu C, McNeill J (2004) Jitter in oscillators with 1/f noise sources. Proc ISCAS 1:I–773–6. DOI 10.1109/ISCAS.2004.1328309
21.
go back to reference Meijer G, Wang G, Fruett F (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensor J 1(3):225–234. DOI 10.1109/JSEN. 2001.954835CrossRef Meijer G, Wang G, Fruett F (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensor J 1(3):225–234. DOI 10.1109/JSEN. 2001.954835CrossRef
22.
go back to reference Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2011) Effects of packaging and process spread on a mobility-based frequency reference in 0.16-μm CMOS. In: Proceedings of ESSCIRC, pp 511–514 Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2011) Effects of packaging and process spread on a mobility-based frequency reference in 0.16-μm CMOS. In: Proceedings of ESSCIRC, pp 511–514
23.
go back to reference Duarte D, Geannopoulos G, Mughal U, Wong K, Taylor G (2007) Temperature sensor design in a high volume manufacturing 65nm CMOS digital process. In: Proceedings of IEEE Custom Integrated Circuits Conference (CICC), pp 221–224. DOI 10.1109/CICC.2007.4405718 Duarte D, Geannopoulos G, Mughal U, Wong K, Taylor G (2007) Temperature sensor design in a high volume manufacturing 65nm CMOS digital process. In: Proceedings of IEEE Custom Integrated Circuits Conference (CICC), pp 221–224. DOI 10.1109/CICC.2007.4405718
24.
go back to reference Lakdawala H, Li Y, Raychowdhury A, Taylor G, Soumyanath K (2009) A 1.05 V 1.6 mW 0.45  ∘ C 3σ-resolution ΣΔ-based temperature sensor with parasitic-resistance compensation in 32 nm CMOS. IEEE J Solid State Circ (12):3621–3630 Lakdawala H, Li Y, Raychowdhury A, Taylor G, Soumyanath K (2009) A 1.05 V 1.6 mW 0.45  ∘ C 3σ-resolution ΣΔ-based temperature sensor with parasitic-resistance compensation in 32 nm CMOS. IEEE J Solid State Circ (12):3621–3630
Metadata
Title
A Mobility-Based Time Reference
Authors
Fabio Sebastiano
Lucien J. Breems
Kofi A. A. Makinwa
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3483-2_4