Skip to main content
Top

2024 | OriginalPaper | Chapter

A Model Based on Non-linear Regressions to Predict Aluminum Injection Moulds Lifespan

Authors : Evandro Menezes de Souza Amarante, Victor Gabriel Sousa Fagundes dos Santos, Pedro Guilherme Carvalho de Souza Marconi, Cristiano Vasconcellos Ferreira, Valter Estevão Beal, Armando Sá Ribeiro Junior

Published in: ABCM Series on Mechanical Sciences and Engineering

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter discusses the challenges and benefits of using aluminum alloys in injection moulds for thermoplastic parts, focusing on their superior thermal properties and the need for predictive maintenance. It introduces a mathematical model based on exponential regressions to estimate the number of cycles before maintenance and the mould's lifespan. The model was validated using data from steel moulds and applied to aluminum alloy 7034-T6, demonstrating its potential for improving productivity and quality in the injection moulding process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
1.
go back to reference Menges, G., Mohren, T.: How To Make Injection Molding. Hanser Publication, New York (1983) Menges, G., Mohren, T.: How To Make Injection Molding. Hanser Publication, New York (1983)
2.
go back to reference Arieta Filho, F.G. Marchina, P.M. Dihlman, C. Gonçalves, M.: Aplicação de ligas de alumínio em moldes para injeção de termoplásticos. Revista Ferramental (2019) Arieta Filho, F.G. Marchina, P.M. Dihlman, C. Gonçalves, M.: Aplicação de ligas de alumínio em moldes para injeção de termoplásticos. Revista Ferramental (2019)
4.
go back to reference Gardner, E.S., Jr.: Exponential smoothing: the state of the art – part II. Int. J. Forecast. 22, 637–666 (2006)CrossRef Gardner, E.S., Jr.: Exponential smoothing: the state of the art – part II. Int. J. Forecast. 22, 637–666 (2006)CrossRef
5.
go back to reference Penha, O.K.C.: As funções exponenciais e suas aplicações no modelo epidêmico SIR, pp.1–53 (2021) Penha, O.K.C.: As funções exponenciais e suas aplicações no modelo epidêmico SIR, pp.1–53 (2021)
6.
go back to reference Xu, F., Huang, Z., Yang, F., Wang, D., Tsui, K.L.: Constructing a health indicator for roller bearings by using a stacked auto-encoder with an exponential function to eliminate concussion. Appl. Soft Comput. 89, 1–15 (2020)CrossRef Xu, F., Huang, Z., Yang, F., Wang, D., Tsui, K.L.: Constructing a health indicator for roller bearings by using a stacked auto-encoder with an exponential function to eliminate concussion. Appl. Soft Comput. 89, 1–15 (2020)CrossRef
7.
go back to reference Startks, D.: Aluminum Welding. MoldMaking Technology (2016) Startks, D.: Aluminum Welding. MoldMaking Technology (2016)
8.
go back to reference Williamson, D.F., Parker, R.A., Kendrick, J.S.: The box plot: a simple visual method to interpret data. Ann. Intern. Med. 110(11), 916–921 (1989)CrossRef Williamson, D.F., Parker, R.A., Kendrick, J.S.: The box plot: a simple visual method to interpret data. Ann. Intern. Med. 110(11), 916–921 (1989)CrossRef
9.
go back to reference Kotsiantis, S.B., Kanellopoulos, D., Pintelas, P.E.: Data preprocessing for supervised leaning. World Acad. Sci. Eng. Technol., Int. J. Comput. Inf. Eng. 1(12), 4104–4109 (2007) Kotsiantis, S.B., Kanellopoulos, D., Pintelas, P.E.: Data preprocessing for supervised leaning. World Acad. Sci. Eng. Technol., Int. J. Comput. Inf. Eng. 1(12), 4104–4109 (2007)
10.
go back to reference Mustaffa, Z., Yusof, Y.: A comparison of normalization techniques in predicting dengue outbreak. Int. Conf. Bus. Econ. Res. 1, 345–349 (2010) Mustaffa, Z., Yusof, Y.: A comparison of normalization techniques in predicting dengue outbreak. Int. Conf. Bus. Econ. Res. 1, 345–349 (2010)
11.
go back to reference Halim, K.N.A., Jaya, A.S.M., Fadzil, A.F.A.: Data pre-processing algorithm for neural network binary classification model in bank tele-marketing. Int. J. Innov. Technol. Explor. Eng. 9(3), 272–277 (2020)CrossRef Halim, K.N.A., Jaya, A.S.M., Fadzil, A.F.A.: Data pre-processing algorithm for neural network binary classification model in bank tele-marketing. Int. J. Innov. Technol. Explor. Eng. 9(3), 272–277 (2020)CrossRef
12.
go back to reference Raymaekers, J., Rousseeuw, P.J.: Transforming variables to central normality. Mach Learn (2021) Raymaekers, J., Rousseeuw, P.J.: Transforming variables to central normality. Mach Learn (2021)
14.
go back to reference Ostertagova, E.: Modelling using polynomial regression. Procedia Eng. 48, 500–506 (2012)CrossRef Ostertagova, E.: Modelling using polynomial regression. Procedia Eng. 48, 500–506 (2012)CrossRef
15.
go back to reference Mahaboob, B., Venkateswarlu, B., Narayana, C., Ravi sankar, J., Balasiddamuni, P.: A treatise on ordinary least squares estimation of parameters of linear model. Int. J. Eng. Technol. 7, 518–522 (2018) Mahaboob, B., Venkateswarlu, B., Narayana, C., Ravi sankar, J., Balasiddamuni, P.: A treatise on ordinary least squares estimation of parameters of linear model. Int. J. Eng. Technol. 7, 518–522 (2018)
16.
go back to reference Uçar, M.K., Nour, M., Sindi, H., Polat, K.: The effect of training and testing process on machine learning in biomedical datasets. Math. Probl. Eng. 2020, 17 (2020)CrossRef Uçar, M.K., Nour, M., Sindi, H., Polat, K.: The effect of training and testing process on machine learning in biomedical datasets. Math. Probl. Eng. 2020, 17 (2020)CrossRef
17.
go back to reference Xu, Y., Goodacre, R.: On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2, 249–262 (2018)CrossRef Xu, Y., Goodacre, R.: On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2, 249–262 (2018)CrossRef
18.
go back to reference Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.: Surrogate based-analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)CrossRef Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.: Surrogate based-analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)CrossRef
19.
go back to reference Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 1137–1143 (1995) Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 1137–1143 (1995)
21.
go back to reference Chen, C., Wang, Y., Ou, H., He, Y., Tang, X.: A review on remanufacture of dies and moulds. J. Clean. Prod. 64, 13–23 (2014)CrossRef Chen, C., Wang, Y., Ou, H., He, Y., Tang, X.: A review on remanufacture of dies and moulds. J. Clean. Prod. 64, 13–23 (2014)CrossRef
22.
go back to reference Kaszynski, J.: Choosing Thermally Conductive Tooling Materials. MoldMaking Technology (2002) Kaszynski, J.: Choosing Thermally Conductive Tooling Materials. MoldMaking Technology (2002)
Metadata
Title
A Model Based on Non-linear Regressions to Predict Aluminum Injection Moulds Lifespan
Authors
Evandro Menezes de Souza Amarante
Victor Gabriel Sousa Fagundes dos Santos
Pedro Guilherme Carvalho de Souza Marconi
Cristiano Vasconcellos Ferreira
Valter Estevão Beal
Armando Sá Ribeiro Junior
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-43555-3_4

Premium Partners