Skip to main content
Top

2024 | OriginalPaper | Chapter

A Model Identification Forensics Approach for Signal-Based Condition Monitoring

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Condition monitoring (CM) of machines and robots is vital to improve operational reliability and to avoid occupational incidents. Recently, deep learning (DL) has become popular in CM literature for its outstanding ability of learning fault patterns. However, due to the black box and non-intuitive nature of its layers, the logic behind its decisions is hard to understand. This shortcoming hinders the DL implementation in many critical applications where the user needs to ensure the reliability of the classifier. Hence, in this paper, a new framework for DL-based CM systems is proposed, which consists of four steps (1) Feature extraction (2) Fault diagnosis (3) eXplainable Artificial Intelligence (XAI)-based model optimization (4) Interpretation system. The experimental evaluations on two real-world datasets demonstrate that the proposed XAI interpreter was able to visualize the contributing patterns to fault types. The feature engineering block not only makes it easier for the operator to only observe the contributing features, but also it helps the model optimizer to speed up the runtime. The results show that the proposed model achieved a slightly better accuracy than the other state-of-the-art models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Safizadeh, M., Latifi, S.: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Inf. Fusion 18, 1–8 (2014)CrossRef Safizadeh, M., Latifi, S.: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Inf. Fusion 18, 1–8 (2014)CrossRef
2.
go back to reference Hofmann, D.F., Phares, D.: Remote monitoring and diagnostics of large rotating machinery. In: Cement Industry Technical Conference, 2003. Conference Record. IEEE-IAS/PCA 2003, pp. 47–55 (2003) Hofmann, D.F., Phares, D.: Remote monitoring and diagnostics of large rotating machinery. In: Cement Industry Technical Conference, 2003. Conference Record. IEEE-IAS/PCA 2003, pp. 47–55 (2003)
3.
go back to reference Antwarg, L., Miller, R.M., Shapira, B., Rokach, L.: Explaining anomalies detected by autoencoders using shapley additive explanations. Expert Syst. Appl. 186, 115 736 (2021) Antwarg, L., Miller, R.M., Shapira, B., Rokach, L.: Explaining anomalies detected by autoencoders using shapley additive explanations. Expert Syst. Appl. 186, 115 736 (2021)
4.
go back to reference Shukla, S., Yadav, R., Sharma, J., Khare, S.: Analysis of statistical features for fault detection in ball bearing. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–7 (2015) Shukla, S., Yadav, R., Sharma, J., Khare, S.: Analysis of statistical features for fault detection in ball bearing. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–7 (2015)
5.
go back to reference Zhang, L., Xiong, G., Liu, H., Zou, H., Guo, W.: Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 37(8), 6077–6085 (2010)CrossRef Zhang, L., Xiong, G., Liu, H., Zou, H., Guo, W.: Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 37(8), 6077–6085 (2010)CrossRef
6.
go back to reference Wu, S.D., Wu, P.H., Wu, C.W., Ding, J.J., Wang, C.C.: Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy 14(8), 1343–1356 (2012)CrossRef Wu, S.D., Wu, P.H., Wu, C.W., Ding, J.J., Wang, C.C.: Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy 14(8), 1343–1356 (2012)CrossRef
7.
go back to reference de Azevedo, H.D.M., Araujo, A.M., Bouchonneau, N.: A review of wind turbine bearing condition monitoring: state of the art and challenges. Renew. Sustain. Energy Rev. 56, 368–379 (2016)CrossRef de Azevedo, H.D.M., Araujo, A.M., Bouchonneau, N.: A review of wind turbine bearing condition monitoring: state of the art and challenges. Renew. Sustain. Energy Rev. 56, 368–379 (2016)CrossRef
8.
go back to reference Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998) Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)
9.
go back to reference Sabir, R., Rosato, D., Hartmann, S., Guehmann, C.: LSTM based bearing fault diagnosis of electrical machines using motor current signal. In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 613–618 (2019) Sabir, R., Rosato, D., Hartmann, S., Guehmann, C.: LSTM based bearing fault diagnosis of electrical machines using motor current signal. In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 613–618 (2019)
10.
go back to reference Netsanet, S., Zhang, J., Zheng, D.: Bagged decision trees based scheme of microgrid protection using windowed fast Fourier and wavelet transforms. Electronics 7(5), 61 (2018)CrossRef Netsanet, S., Zhang, J., Zheng, D.: Bagged decision trees based scheme of microgrid protection using windowed fast Fourier and wavelet transforms. Electronics 7(5), 61 (2018)CrossRef
11.
go back to reference Jalayer, M., Kaboli, A., Orsenigo, C., Vercellis, C.: Fault detection and diagnosis with imbalanced and noisy data: a hybrid framework for rotating machinery. Machines 10(4), 237 (2022)CrossRef Jalayer, M., Kaboli, A., Orsenigo, C., Vercellis, C.: Fault detection and diagnosis with imbalanced and noisy data: a hybrid framework for rotating machinery. Machines 10(4), 237 (2022)CrossRef
12.
go back to reference Ahang, M., Jalayer, M., Shojaeinasab, A., Ogunfowora, O., Charter, T., Najjaran, H.: Synthesizing rolling bearing fault samples in new conditions: a framework based on a modified CGAN. Sensors 22(14), 5413 (2022)CrossRef Ahang, M., Jalayer, M., Shojaeinasab, A., Ogunfowora, O., Charter, T., Najjaran, H.: Synthesizing rolling bearing fault samples in new conditions: a framework based on a modified CGAN. Sensors 22(14), 5413 (2022)CrossRef
13.
go back to reference Shapley, L.: Quota solutions op n-person games1. Contrib. Theory Games (AM-28) vol. II 28, 343 (2016) Shapley, L.: Quota solutions op n-person games1. Contrib. Theory Games (AM-28) vol. II 28, 343 (2016)
14.
go back to reference Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
15.
go back to reference Jalayer, M., Orsenigo, C., Vercellis, C.: Fault detection and diagnosis for rotating machinery: a model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms. Comput. Ind. 125, 103378 (2021)CrossRef Jalayer, M., Orsenigo, C., Vercellis, C.: Fault detection and diagnosis for rotating machinery: a model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms. Comput. Ind. 125, 103378 (2021)CrossRef
16.
go back to reference Lu, C., Wang, Z.-Y., Qin, W.-L., Ma, J.: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Sig. Process. 130, 377–388 (2017)CrossRef Lu, C., Wang, Z.-Y., Qin, W.-L., Ma, J.: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Sig. Process. 130, 377–388 (2017)CrossRef
17.
go back to reference Mao, W., Feng, W., Liu, Y., Zhang, D., Liang, X.: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis. Mech. Syst. Sig. Process. 150, 107233 (2021)CrossRef Mao, W., Feng, W., Liu, Y., Zhang, D., Liang, X.: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis. Mech. Syst. Sig. Process. 150, 107233 (2021)CrossRef
18.
go back to reference Shen, C., Qi, Y., Wang, J., Cai, G., Zhu, Z.: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder. Eng. Appl. Artif. Intell. 76, 170–184 (2018)CrossRef Shen, C., Qi, Y., Wang, J., Cai, G., Zhu, Z.: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder. Eng. Appl. Artif. Intell. 76, 170–184 (2018)CrossRef
Metadata
Title
A Model Identification Forensics Approach for Signal-Based Condition Monitoring
Authors
Masoud Jalayer
Ardeshir Shojaeinasab
Homayoun Najjaran
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_2

Premium Partner