Skip to main content
Top

2013 | OriginalPaper | Chapter

A Model of Electromechanical Coupling in the Small Intestine

Authors : Peng Du , Jeelean Lim, Leo K. Cheng

Published in: Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The motility of the intestines is partly governed by a bioelectrical activity termed intestinal slow wave activity; however, the dynamics of the electromechanical relationship have remained poorly defined. With the recent advances in continuum-based multi-scale modeling techniques, we present a modeling framework to investigate the electromechanical coupling in a segment of small intestine. The overall modeling framework included three parts: (i) an anatomical model describing the geometry and makeup of the smooth muscle fibers; (ii) an electrical model describing the slow wave propagation; and (iii) a mechanical model describing the active and passive tension laws during contraction. The resultant intraluminal pressure was approximated using Lamé’s thick-walled cylinder equation. This modeling framework demonstrates the potential to be used in investigating the effects of intestinal slow wave dysrhythmias on the motility of the small intestine, and may be extended in the future to incorporate additional regulatory factors and pathways.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ailiani, A.C., Neuberger, T., Brasseur, J.G., Banco, G., Wang, Y., Smith, N.B., Webb, A.G.: Quantitative analysis of peristaltic and segmental motion in vivo in the rat small intestine using dynamic MRI. Magnet. Reson. Med. 62(1), 116–126 (2009)CrossRef Ailiani, A.C., Neuberger, T., Brasseur, J.G., Banco, G., Wang, Y., Smith, N.B., Webb, A.G.: Quantitative analysis of peristaltic and segmental motion in vivo in the rat small intestine using dynamic MRI. Magnet. Reson. Med. 62(1), 116–126 (2009)CrossRef
2.
go back to reference Aliev, R.R., Richards, W., Wikswo, J.P.: A simple nonlinear model of electrical activity in the intestine. J. Theor. Biol. 204(1), 21–28 (2000)CrossRef Aliev, R.R., Richards, W., Wikswo, J.P.: A simple nonlinear model of electrical activity in the intestine. J. Theor. Biol. 204(1), 21–28 (2000)CrossRef
3.
go back to reference Alvarez, W.C.: Functional variations in contractions of different parts of the small intestine. Am. J. Physiol. 35, 177–193 (1914) Alvarez, W.C.: Functional variations in contractions of different parts of the small intestine. Am. J. Physiol. 35, 177–193 (1914)
4.
go back to reference Alvarez, W.C., Mahoney, L.J.: Action currents in stomach and intestine. Am. J. Physiol. 58, 476–493 (1922) Alvarez, W.C., Mahoney, L.J.: Action currents in stomach and intestine. Am. J. Physiol. 58, 476–493 (1922)
5.
go back to reference Arkwright, J.W., Blenman, N.G., Underhill, I.D., Maunder, S.A., Szczesniak, M.M., Dinning, P.G., Cook, I.J.: In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders. Opt. Express. 17, 4500–4508 (2009)CrossRef Arkwright, J.W., Blenman, N.G., Underhill, I.D., Maunder, S.A., Szczesniak, M.M., Dinning, P.G., Cook, I.J.: In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders. Opt. Express. 17, 4500–4508 (2009)CrossRef
6.
go back to reference Bellini, C., Glass, P., Sitti, M., Di Martino, E.S.: Biaxial mechanical modeling of the small intestine. J. Mech. Behav. Biomed. Mater. 4(8), 1727–1740 (2011)CrossRef Bellini, C., Glass, P., Sitti, M., Di Martino, E.S.: Biaxial mechanical modeling of the small intestine. J. Mech. Behav. Biomed. Mater. 4(8), 1727–1740 (2011)CrossRef
7.
go back to reference Berne, R.M., Levy, M.N., Koeppen, B.M., Stanton, B.A.: Physiology, 4th edn. Mosby, St. Louis (1998) Berne, R.M., Levy, M.N., Koeppen, B.M., Stanton, B.A.: Physiology, 4th edn. Mosby, St. Louis (1998)
8.
go back to reference Beyder, A., Rae, J.L., Bernard, C., Strege, P.R., Sachs, F., Farrugia, G.: Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J. Physiol. 588(24), 4969–4985 (2010)CrossRef Beyder, A., Rae, J.L., Bernard, C., Strege, P.R., Sachs, F., Farrugia, G.: Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J. Physiol. 588(24), 4969–4985 (2010)CrossRef
9.
go back to reference Bolton, T.B., Prestwich, S.A., Zholos, A.V., Gordienko, D.V.: Excitation contraction coupling in gastrointestinal and other smooth muscles. Annu. Rev. Physiol. 61, 85–115 (1999)CrossRef Bolton, T.B., Prestwich, S.A., Zholos, A.V., Gordienko, D.V.: Excitation contraction coupling in gastrointestinal and other smooth muscles. Annu. Rev. Physiol. 61, 85–115 (1999)CrossRef
10.
go back to reference Buist, M.L., Poh, Y.C.: An extended bidomain framework incorporating multiple cell types. Biophys. J. 99(1), 13–18 (2010)CrossRef Buist, M.L., Poh, Y.C.: An extended bidomain framework incorporating multiple cell types. Biophys. J. 99(1), 13–18 (2010)CrossRef
11.
go back to reference Cajal, S.R.: Histologie du Systeme Nerveux de l’homme et des Vertebretes. Maloine, Paris (1911) Cajal, S.R.: Histologie du Systeme Nerveux de l’homme et des Vertebretes. Maloine, Paris (1911)
13.
go back to reference Coleski, R., Hasler, W.L.: Directed endoscopic mucosal mapping of normal and dysrhythmic gastric slow waves in healthy humans. Neurogastroenterol. Motil. 16(5), 557–555 (2004)CrossRef Coleski, R., Hasler, W.L.: Directed endoscopic mucosal mapping of normal and dysrhythmic gastric slow waves in healthy humans. Neurogastroenterol. Motil. 16(5), 557–555 (2004)CrossRef
14.
go back to reference Corrias, A., Buist, M.L.: A quantitative model of gastric smooth muscle cellular activation. Ann. Biomed. Eng. 35(9), 1595–1607 (2007)CrossRef Corrias, A., Buist, M.L.: A quantitative model of gastric smooth muscle cellular activation. Ann. Biomed. Eng. 35(9), 1595–1607 (2007)CrossRef
15.
go back to reference Costa, M., Sanders, K.M., Schemann, M., Smith, T.K., Cook, I.J., De Giorgio, R., Dent, J., Grundy, D., Shea-donohue, T., Tonini, M. et al.: A teaching module on cellular control of small intestinal motility. Neurogastroenterol. Motil. 17, 4–19 (2005) Costa, M., Sanders, K.M., Schemann, M., Smith, T.K., Cook, I.J., De Giorgio, R., Dent, J., Grundy, D., Shea-donohue, T., Tonini, M. et al.: A teaching module on cellular control of small intestinal motility. Neurogastroenterol. Motil. 17, 4–19 (2005)
16.
go back to reference Davidson, J.B., O’Grady, G., Arkwright, J.W., Zarate, N., Scott, S.M., Pullan, A.J., Dinning, P.J.: Anatomical registration and three-dimensional visualization of low and high-resolution pan-colonic manometry recordings. Neurogastroenterol. Motil. 23(4), e171 (2011)CrossRef Davidson, J.B., O’Grady, G., Arkwright, J.W., Zarate, N., Scott, S.M., Pullan, A.J., Dinning, P.J.: Anatomical registration and three-dimensional visualization of low and high-resolution pan-colonic manometry recordings. Neurogastroenterol. Motil. 23(4), e171 (2011)CrossRef
17.
go back to reference Dinning, P.G., Arkwright, J.W., Costa, M., Wiklendt, L., Hennig, G., Brookes, S.J.H., Spencer, N.J.: Temporal relationships between wall motion, intraluminal pressure, and flow in the isolated rabbit small intestine. Am. J. Physiol. Gastr. L 300(4), G577–G585 (2011)CrossRef Dinning, P.G., Arkwright, J.W., Costa, M., Wiklendt, L., Hennig, G., Brookes, S.J.H., Spencer, N.J.: Temporal relationships between wall motion, intraluminal pressure, and flow in the isolated rabbit small intestine. Am. J. Physiol. Gastr. L 300(4), G577–G585 (2011)CrossRef
18.
go back to reference Dinning, P.G., Zarate, N., Hunt, L.M., Fuentealba, S.E., Mohammed, S.D., Szczesniak, M.M., Lubowski, D.Z., Preston, S.L., Fairclough, P.D., Lunniss, P.J., Scott, S.M., Cook, I.J.: Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of colonic propagating pressure waves in severe constipation. Neurgastroenterol. Motil. 22, e340–e349 (2010)CrossRef Dinning, P.G., Zarate, N., Hunt, L.M., Fuentealba, S.E., Mohammed, S.D., Szczesniak, M.M., Lubowski, D.Z., Preston, S.L., Fairclough, P.D., Lunniss, P.J., Scott, S.M., Cook, I.J.: Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of colonic propagating pressure waves in severe constipation. Neurgastroenterol. Motil. 22, e340–e349 (2010)CrossRef
19.
go back to reference Dou, Y., Zhao, J., Gregersen, H.: Morphology and stress–strain properties along the small intestine in the rat. J. Biomed. Eng. 125, 266 (2003) Dou, Y., Zhao, J., Gregersen, H.: Morphology and stress–strain properties along the small intestine in the rat. J. Biomed. Eng. 125, 266 (2003)
20.
go back to reference Fallingborg, J., Pedersen, P., Jacobsen, B.A.: Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn’s disease. Dig. Dis. Sci. 43(4), 702–705 (1998)CrossRef Fallingborg, J., Pedersen, P., Jacobsen, B.A.: Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn’s disease. Dig. Dis. Sci. 43(4), 702–705 (1998)CrossRef
21.
go back to reference Farrugia, G.: Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. Annu. Rev. Physiol. 61, 45–84 (1999)CrossRef Farrugia, G.: Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. Annu. Rev. Physiol. 61, 45–84 (1999)CrossRef
22.
go back to reference Farrugia, G.: Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20(Suppl 1), 54–63 (2008)CrossRef Farrugia, G.: Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20(Suppl 1), 54–63 (2008)CrossRef
23.
go back to reference Ferrua, M.J., Singh, R.P.: Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J. Food Sci. 75(7), R151–R162 (2010)CrossRef Ferrua, M.J., Singh, R.P.: Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J. Food Sci. 75(7), R151–R162 (2010)CrossRef
24.
go back to reference Fung, Y.: Biomechanics: mechanical properties of living tissues. vol. 12, Springer, New York (1993) Fung, Y.: Biomechanics: mechanical properties of living tissues. vol. 12, Springer, New York (1993)
25.
go back to reference Gajendiran, V., Buist, M.L.: A quantitative description of active force generation in gastrointestinal smooth muscle. Int. J. Numer. Method Biomed. Eng. 27(3), 450–460 (2011)MATHCrossRef Gajendiran, V., Buist, M.L.: A quantitative description of active force generation in gastrointestinal smooth muscle. Int. J. Numer. Method Biomed. Eng. 27(3), 450–460 (2011)MATHCrossRef
26.
go back to reference Gregersen, H., Kassab, G.: Biomechanics of the gastrointestinal tract. Neurogastroenterol. Motil. 8(4), 277–297 (1996)CrossRef Gregersen, H., Kassab, G.: Biomechanics of the gastrointestinal tract. Neurogastroenterol. Motil. 8(4), 277–297 (1996)CrossRef
27.
go back to reference Hai, C., Murphy, R.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. Cell Physiol. 254(1), C99–C106 (1988) Hai, C., Murphy, R.: Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. Cell Physiol. 254(1), C99–C106 (1988)
28.
go back to reference Hennig, G.W., Costa, M., Chen, B.N., Brookes, S.J.: Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J. Physiol. 517(2), 575 (1999)CrossRef Hennig, G.W., Costa, M., Chen, B.N., Brookes, S.J.: Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J. Physiol. 517(2), 575 (1999)CrossRef
29.
go back to reference Herlihy, J., Murphy, R.: Length–tension relationship of smooth muscle of the hog carotid artery. Circ. Res. 33(3), 275–283 (1952)CrossRef Herlihy, J., Murphy, R.: Length–tension relationship of smooth muscle of the hog carotid artery. Circ. Res. 33(3), 275–283 (1952)CrossRef
30.
go back to reference Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952) Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)
31.
go back to reference Huizinga, J.D., Lammers, W.J.E.P.: Gut peristalsis is coordinated by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296(1), 1–8 (2009)CrossRef Huizinga, J.D., Lammers, W.J.E.P.: Gut peristalsis is coordinated by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296(1), 1–8 (2009)CrossRef
32.
go back to reference Hunter, P.J., McCulloch, A.D., Ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2–3), 289–331 (1998)CrossRef Hunter, P.J., McCulloch, A.D., Ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2–3), 289–331 (1998)CrossRef
33.
go back to reference Kamm, K.E., Stull, J.T.: The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu. Rev. Pharmacol. 25(1), 593–620 (1985)CrossRef Kamm, K.E., Stull, J.T.: The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu. Rev. Pharmacol. 25(1), 593–620 (1985)CrossRef
34.
go back to reference Lammers, W., Stephen, B., Slack, J.R., Dhanasekaran, S.: Anisotropic propagation in the small intestine. Neurogastroenterol. Motil. 14(4), 357–364 (2002)CrossRef Lammers, W., Stephen, B., Slack, J.R., Dhanasekaran, S.: Anisotropic propagation in the small intestine. Neurogastroenterol. Motil. 14(4), 357–364 (2002)CrossRef
35.
go back to reference Lentle, R.G., Janssen, P.W.: Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J. Comp. Physiol. B 178(6), 673–690 (2008)CrossRef Lentle, R.G., Janssen, P.W.: Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J. Comp. Physiol. B 178(6), 673–690 (2008)CrossRef
36.
go back to reference Lentle, R.G., Janssen, P.W., Goh, K., Chambers, P., Hulls, C.: Quantification of the effects of the volume and viscosity of gastric contents on antral and fundic activity in the rat stomach maintained ex vivo. Dig. Dis. Sci. 55, 3349–3360 (2010)CrossRef Lentle, R.G., Janssen, P.W., Goh, K., Chambers, P., Hulls, C.: Quantification of the effects of the volume and viscosity of gastric contents on antral and fundic activity in the rat stomach maintained ex vivo. Dig. Dis. Sci. 55, 3349–3360 (2010)CrossRef
37.
go back to reference Lin, A.S., Buist, M.L., Smith, N.P., Pullan, A.J.: Modelling slow wave activity in the small intestine. J. Theor. Biol. 242, 356–362 (2006)MathSciNetCrossRef Lin, A.S., Buist, M.L., Smith, N.P., Pullan, A.J.: Modelling slow wave activity in the small intestine. J. Theor. Biol. 242, 356–362 (2006)MathSciNetCrossRef
38.
go back to reference Lindeburg, M.R.: Mechanical engineering reference manual for the PE exam. Professional Publications, Inc., Belmont (2006) Lindeburg, M.R.: Mechanical engineering reference manual for the PE exam. Professional Publications, Inc., Belmont (2006)
39.
go back to reference Meiss, R.A.: Mechanical properties of gastrointestinal smooth muscle. Compr. Physiol. 273–329 (1989) Meiss, R.A.: Mechanical properties of gastrointestinal smooth muscle. Compr. Physiol. 273–329 (1989)
40.
go back to reference Muller-Borer, B.J., Erdman, D.J., Buchanan, J.W.: Electrical coupling and impulse propagation in anatomically modeled ventricular tissue. IEEE Trans. Biomed. Eng. 41(5), 445–454 (1994)CrossRef Muller-Borer, B.J., Erdman, D.J., Buchanan, J.W.: Electrical coupling and impulse propagation in anatomically modeled ventricular tissue. IEEE Trans. Biomed. Eng. 41(5), 445–454 (1994)CrossRef
41.
go back to reference Nash, M.: Mechanics and material properties of the heart using an anatomically accurate mathematical mode. Thesis, The University of Auckland (1998) Nash, M.: Mechanics and material properties of the heart using an anatomically accurate mathematical mode. Thesis, The University of Auckland (1998)
42.
go back to reference Negi, L.: Strength of Materials. Tata McGraw-Hill Education, New Delhi (2007) Negi, L.: Strength of Materials. Tata McGraw-Hill Education, New Delhi (2007)
43.
go back to reference O’Grady, G., Du, P., Egbuji, J.U., Lammers, W.J.E.P., Wahab, A., Pullan, A.J., Cheng, L.K., Windsor, J.A.: A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg. Endosc. 23(12), 2842–2848 (2009)CrossRef O’Grady, G., Du, P., Egbuji, J.U., Lammers, W.J.E.P., Wahab, A., Pullan, A.J., Cheng, L.K., Windsor, J.A.: A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg. Endosc. 23(12), 2842–2848 (2009)CrossRef
44.
go back to reference Ozaki, H., Stevens, R.J., Blondfield, D.P., Publicover, N.G., Sanders, K.M.: Simultaneous measurement of membrane potential, cytosolic \(\text{Ca}^{2+}\), and tension in intact smooth muscles. Am. J. Physiol. Gastr. L 260(5):C917–C925 (1991) Ozaki, H., Stevens, R.J., Blondfield, D.P., Publicover, N.G., Sanders, K.M.: Simultaneous measurement of membrane potential, cytosolic \(\text{Ca}^{2+}\), and tension in intact smooth muscles. Am. J. Physiol. Gastr. L 260(5):C917–C925 (1991)
45.
go back to reference Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. World scientific publishing Co Pte Ltd, Singapore (2005) Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. World scientific publishing Co Pte Ltd, Singapore (2005)
46.
go back to reference Rao, S.S., Singh, S.: Clinical utility of colonic and anorectal manometry in chronic constipation. J. Clin. Gastroenterol. 44(9), 579–609 (2010)CrossRef Rao, S.S., Singh, S.: Clinical utility of colonic and anorectal manometry in chronic constipation. J. Clin. Gastroenterol. 44(9), 579–609 (2010)CrossRef
47.
go back to reference Rembold, C., Murphy, R.: Latch-bridge model in smooth muscle: \([\text{Ca}^{2+}]_i\) can quantitatively predict stress. Am. J. Physiol. Cell Physiol. 259(2):C251–C257 (1990) Rembold, C., Murphy, R.: Latch-bridge model in smooth muscle: \([\text{Ca}^{2+}]_i\) can quantitatively predict stress. Am. J. Physiol. Cell Physiol. 259(2):C251–C257 (1990)
48.
go back to reference Sacks, M.: Biaxial mechanical evaluation of planar biological materials. J. Elasticity 61(1), 199–246 (2000)MATHCrossRef Sacks, M.: Biaxial mechanical evaluation of planar biological materials. J. Elasticity 61(1), 199–246 (2000)MATHCrossRef
49.
go back to reference Sanders, K.M.: Regulation of smooth muscle excitation and contraction. Neurogastroenterol. Motil. 20, 39–53 (2008)CrossRef Sanders, K.M.: Regulation of smooth muscle excitation and contraction. Neurogastroenterol. Motil. 20, 39–53 (2008)CrossRef
50.
go back to reference Seerden, T.C., Lammers, W., Winter, D., De Man, J.G., Pelckmans, P.A.: Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine. Am. J. Physiol. Gastr. L 289(6), G1043–G1051 (2005)CrossRef Seerden, T.C., Lammers, W., Winter, D., De Man, J.G., Pelckmans, P.A.: Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine. Am. J. Physiol. Gastr. L 289(6), G1043–G1051 (2005)CrossRef
51.
go back to reference Szurszewski, J.H.: A 100-year perspective on gastrointestinal motility. Am. J. Physiol. 274(3 Pt 1):G447–G453 (1998) Szurszewski, J.H.: A 100-year perspective on gastrointestinal motility. Am. J. Physiol. 274(3 Pt 1):G447–G453 (1998)
52.
go back to reference Szurszewski, J.H., Farrugia, G.: Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol. Motil. 16(Suppl 1):81–85 (2004) Szurszewski, J.H., Farrugia, G.: Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol. Motil. 16(Suppl 1):81–85 (2004)
53.
go back to reference VanBuren, P., Palmer, B.M.: Cooperative activation of the cardiac myofilament. Circulation 121(3), 351–353 (2010)CrossRef VanBuren, P., Palmer, B.M.: Cooperative activation of the cardiac myofilament. Circulation 121(3), 351–353 (2010)CrossRef
Metadata
Title
A Model of Electromechanical Coupling in the Small Intestine
Authors
Peng Du
Jeelean Lim
Leo K. Cheng
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2012_153