Skip to main content
Top
Published in: Archive of Applied Mechanics 9/2021

26-05-2021 | Original

A modified Zerilli–Armstrong model as the asymmetric visco-plastic part of a multi-mechanism model for cutting simulations

Authors: C. Cheng, R. Mahnken

Published in: Archive of Applied Mechanics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Zerilli–Armstrong (ZA) model is modified to describe asymmetric visco-plastic material properties as part of a multi-mechanism model (MMM) for cutting simulations. This is done as an improvement of an existing modified Johnson–Cook (JC) model. Based on the modification of the ZA model by Samantatray et al.  for elevated-temperature behaviour, we replace the hardening stress by the sum of nonlinear and linear isotropic hardening stresses using internal variables, thus consider history effects. Furthermore, weighting functions related to stress modes are applied taking asymmetric effect of strength into account. For calibrating the modified ZA model, experimental data in a wide range of strain rates and temperatures as well as under different loading types are used. Moreover, a systematic comparative study on the modified JC and ZA model is made regarding their dependence on strain, strain rate, and temperature. Finally, the modified ZA model is validated by comparing temperatures and cutting forces of cutting simulations with those of hard turning experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abed, F.H., Voyiadjis, G.Z.: A consistent modified Zerilli–Armstrong flow stress model for BCC and FCC metals for elevated temperatures. Acta Mech. 175, 1–18 (2005)MATHCrossRef Abed, F.H., Voyiadjis, G.Z.: A consistent modified Zerilli–Armstrong flow stress model for BCC and FCC metals for elevated temperatures. Acta Mech. 175, 1–18 (2005)MATHCrossRef
2.
go back to reference Ammar, K., Appolaire, B., Cailletaud, G., Feyel, F., Forest, S.: Finite element formulation of a phase field model based on the concept of generalized stresses. Comput. Mater. Sci. 45, 800–805 (2009)CrossRef Ammar, K., Appolaire, B., Cailletaud, G., Feyel, F., Forest, S.: Finite element formulation of a phase field model based on the concept of generalized stresses. Comput. Mater. Sci. 45, 800–805 (2009)CrossRef
3.
go back to reference ASM Handbook: Mechanical Testing and Evaluation, Materials Part Ohio, Vol. 8 (2002) ASM Handbook: Mechanical Testing and Evaluation, Materials Part Ohio, Vol. 8 (2002)
4.
go back to reference Behrens, A., Westhoff, B., Kalisch, K.: Application of the finite element method at the chip forming process under high speed cutting conditions. In: Tönshoff, H.K., Hollmann, F. (Eds.) Hochgeschwindigkeitsspanen, pp. 112–134. Wiley (2005) Behrens, A., Westhoff, B., Kalisch, K.: Application of the finite element method at the chip forming process under high speed cutting conditions. In: Tönshoff, H.K., Hollmann, F. (Eds.) Hochgeschwindigkeitsspanen, pp. 112–134. Wiley (2005)
5.
go back to reference Carroll, J.T., Strenkowski, J.S.: Finite element models of orthogonal cutting with application to single point diamond turning. Int. J. Mech. Sci. 30, 899–920 (1988)CrossRef Carroll, J.T., Strenkowski, J.S.: Finite element models of orthogonal cutting with application to single point diamond turning. Int. J. Mech. Sci. 30, 899–920 (1988)CrossRef
6.
go back to reference Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)MATHCrossRef Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)MATHCrossRef
7.
go back to reference Chen, C., Yin, H., Humail, I.S., Wang, Y., Qu, X.: A comparative study of a back propagation artificial neural network and a Zerilli–Armstrong model for pure molybdenum during hot deformation. Int. J. Refract. Met. Hard Mater. 25(5–6), 411–416 (2007)CrossRef Chen, C., Yin, H., Humail, I.S., Wang, Y., Qu, X.: A comparative study of a back propagation artificial neural network and a Zerilli–Armstrong model for pure molybdenum during hot deformation. Int. J. Refract. Met. Hard Mater. 25(5–6), 411–416 (2007)CrossRef
8.
go back to reference Cheng, C., Mahnken, R.: A multi-mechanism model for cutting simulations based on the concept of generalized stresses. Comput. Mater. Sci. B 100, 144–158 (2015)CrossRef Cheng, C., Mahnken, R.: A multi-mechanism model for cutting simulations based on the concept of generalized stresses. Comput. Mater. Sci. B 100, 144–158 (2015)CrossRef
9.
go back to reference Cheng, C., Mahnken, R.: Extension of a multi-mechanism model: hardness-based flow and transformation induced plasticity for austenitization. Int. J. Solids Struct. 102–103, 127–141 (2016)CrossRef Cheng, C., Mahnken, R.: Extension of a multi-mechanism model: hardness-based flow and transformation induced plasticity for austenitization. Int. J. Solids Struct. 102–103, 127–141 (2016)CrossRef
10.
go back to reference Cheng, C., Mahnken, R.: A multi-mechanism model for cutting simulation: a Ginzburg–Landau type phase gradient and numerical implementations. Int. J. Solids Struct. 160, 1–17 (2018)CrossRef Cheng, C., Mahnken, R.: A multi-mechanism model for cutting simulation: a Ginzburg–Landau type phase gradient and numerical implementations. Int. J. Solids Struct. 160, 1–17 (2018)CrossRef
11.
go back to reference Chiou, S.T., Cheng, W.C., Lee, W.S.: Strain rate effects on the mechanical properties of a Fe–Mn–Al alloy under dynamic impact deformations. Mater. Sci. Eng. A 392, 156–162 (2005)CrossRef Chiou, S.T., Cheng, W.C., Lee, W.S.: Strain rate effects on the mechanical properties of a Fe–Mn–Al alloy under dynamic impact deformations. Mater. Sci. Eng. A 392, 156–162 (2005)CrossRef
12.
go back to reference Dudzinski, D., Molinari, A.: A modelling of cutting for viscoplastic materials. Int. J. Mech. Sci. 39(4), 369–389 (1997)MATHCrossRef Dudzinski, D., Molinari, A.: A modelling of cutting for viscoplastic materials. Int. J. Mech. Sci. 39(4), 369–389 (1997)MATHCrossRef
13.
go back to reference Ehlers, W.: A single-surface yield function for geomaterials. Arch. Appl. Mech. 65, 246–259 (1995)MATHCrossRef Ehlers, W.: A single-surface yield function for geomaterials. Arch. Appl. Mech. 65, 246–259 (1995)MATHCrossRef
14.
go back to reference Farrokh, B., Khan, A.S.: Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: synthesis, experiment, and constitutive modeling. Int. J. P. 25, 715–732 (2009)MATHCrossRef Farrokh, B., Khan, A.S.: Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: synthesis, experiment, and constitutive modeling. Int. J. P. 25, 715–732 (2009)MATHCrossRef
15.
go back to reference Forest, S., Ammar, K., Appolaire, B.: Micromorphic vs phase-field approaches for gradient viscoplasticity and phase transformations. Lect. Notes Appl. Comput. Mech. 59(2011), 69–88 (2011)MathSciNetCrossRef Forest, S., Ammar, K., Appolaire, B.: Micromorphic vs phase-field approaches for gradient viscoplasticity and phase transformations. Lect. Notes Appl. Comput. Mech. 59(2011), 69–88 (2011)MathSciNetCrossRef
16.
go back to reference Haddag, B., Atlati, S., Nouari, M., Moufiki, A.: Dry machining aeronautical aluminum alloy AA2024-T351: analysis of cutting forces, chip segmentation and built-up edge formation. Alumin. Alloys 6(9), 197 (2016) Haddag, B., Atlati, S., Nouari, M., Moufiki, A.: Dry machining aeronautical aluminum alloy AA2024-T351: analysis of cutting forces, chip segmentation and built-up edge formation. Alumin. Alloys 6(9), 197 (2016)
17.
go back to reference Hallberg, H., Hakansson, P., Ristimaa, M.: A constitutive model for the formation of martensite in austenitic steels under large strain plasticity. Int. J. Plast. 23, 1213–1239 (2007)MATHCrossRef Hallberg, H., Hakansson, P., Ristimaa, M.: A constitutive model for the formation of martensite in austenitic steels under large strain plasticity. Int. J. Plast. 23, 1213–1239 (2007)MATHCrossRef
18.
19.
go back to reference He, A., Xie, G., Zhang, H., Wang, X.: A modified Zerilli–Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater. Des. 56, 122–127 (2014)CrossRef He, A., Xie, G., Zhang, H., Wang, X.: A modified Zerilli–Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater. Des. 56, 122–127 (2014)CrossRef
20.
go back to reference Hortig, C.: Local and Non-local Thermomechanical Modeling and Finite-element Simulation of High-speed Cutting, Dissertation, University of Dortmund (2010) Hortig, C.: Local and Non-local Thermomechanical Modeling and Finite-element Simulation of High-speed Cutting, Dissertation, University of Dortmund (2010)
21.
go back to reference Ivanov, I.M.: Simulationsmodell als Basis zur Ableitung von Zerspanstrategien zur Reduzierung von thermischen Bearbeitungseinflssen beim Hartdrehen, Dissertation, TU Berlin, Germany (2017) Ivanov, I.M.: Simulationsmodell als Basis zur Ableitung von Zerspanstrategien zur Reduzierung von thermischen Bearbeitungseinflssen beim Hartdrehen, Dissertation, TU Berlin, Germany (2017)
22.
go back to reference Jaspers, S.P.F.C., Dautzenberg, J.H.: Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. Int. J. Mater. Process. Technol. 122, 322–330 (2002)CrossRef Jaspers, S.P.F.C., Dautzenberg, J.H.: Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. Int. J. Mater. Process. Technol. 122, 322–330 (2002)CrossRef
23.
go back to reference Johnson, G.R.; Cook, W.H.: A constitutive model and data for metals subjected to large strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics. The Hague, pp. 541–547 (1983) Johnson, G.R.; Cook, W.H.: A constitutive model and data for metals subjected to large strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics. The Hague, pp. 541–547 (1983)
24.
go back to reference Khan, A.S., Zhang, H., Takacs, L.: Mechanical response and modeling of fully compacted nanocrystalline iron and copper. Int. J. Plast. 16, 1459–1476 (2000)MATHCrossRef Khan, A.S., Zhang, H., Takacs, L.: Mechanical response and modeling of fully compacted nanocrystalline iron and copper. Int. J. Plast. 16, 1459–1476 (2000)MATHCrossRef
25.
go back to reference Leblond, J.B.: Mathematical modelling of transformation plasticity in steels II: coupling with strain hardening phenomena. Int. J. Plast. 5, 537–591 (1989)CrossRef Leblond, J.B.: Mathematical modelling of transformation plasticity in steels II: coupling with strain hardening phenomena. Int. J. Plast. 5, 537–591 (1989)CrossRef
26.
go back to reference Levitas, A.V., Idesman, A.V., Olson, G.B.: Continuum modeling of strain-induced martensitic phase transformation at shear-band intersections. Acta Mater. 47(1), 219–233 (1998)CrossRef Levitas, A.V., Idesman, A.V., Olson, G.B.: Continuum modeling of strain-induced martensitic phase transformation at shear-band intersections. Acta Mater. 47(1), 219–233 (1998)CrossRef
27.
go back to reference Li, H.Y., Khan, H., Wang, X.F., Wei, D.D., Hu, J.D., Li, Y.H.: A comparative study on modified Zerilli–Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel. Mater. Sci. Eng. A 536, 216–222 (2012)CrossRef Li, H.Y., Khan, H., Wang, X.F., Wei, D.D., Hu, J.D., Li, Y.H.: A comparative study on modified Zerilli–Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel. Mater. Sci. Eng. A 536, 216–222 (2012)CrossRef
28.
go back to reference Liang, R., Khan, A.S.: A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int. J. Plast. 15, 963–980 (1999)MATHCrossRef Liang, R., Khan, A.S.: A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int. J. Plast. 15, 963–980 (1999)MATHCrossRef
29.
go back to reference Lin, Y., Chen, X.: A combined Johnson–Cook and Zerilli–Armstrong model for hot compressed typical high-strength alloy steel. Comput. Mater. Sci. 49(3), 628–633 (2010)CrossRef Lin, Y., Chen, X.: A combined Johnson–Cook and Zerilli–Armstrong model for hot compressed typical high-strength alloy steel. Comput. Mater. Sci. 49(3), 628–633 (2010)CrossRef
30.
go back to reference Mahnken, R.: Theoretical, numerical and identification aspects of a new model class for ductile damage. Int. J. Plast. 18, 801–831 (2002)MATHCrossRef Mahnken, R.: Theoretical, numerical and identification aspects of a new model class for ductile damage. Int. J. Plast. 18, 801–831 (2002)MATHCrossRef
31.
go back to reference Mahnken, R.: Creep simulation of asymmetric effects by use of stress mode dependent weighting functions. Int. J. Solids Struct. 40, 6189–6209 (2003)MATHCrossRef Mahnken, R.: Creep simulation of asymmetric effects by use of stress mode dependent weighting functions. Int. J. Solids Struct. 40, 6189–6209 (2003)MATHCrossRef
32.
go back to reference Mahnken, R.: Void growth in finite deformation elasto-plasticity due to hydrostatic stress states. Comput. Methods Appl. Mech. Eng. 194, 3689–3709 (2005)MATHCrossRef Mahnken, R.: Void growth in finite deformation elasto-plasticity due to hydrostatic stress states. Comput. Methods Appl. Mech. Eng. 194, 3689–3709 (2005)MATHCrossRef
33.
go back to reference Mahnken, R.: Identification of material parameters for constitutive equations. In: Encyclopedia of Computational Mechanics Second Edition. Wiley (2017) Mahnken, R.: Identification of material parameters for constitutive equations. In: Encyclopedia of Computational Mechanics Second Edition. Wiley (2017)
34.
go back to reference Mahnken, R., Schneidt, A., Antretter, T.: Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel. Int. J. Plast. 25, 183–204 (2009)MATHCrossRef Mahnken, R., Schneidt, A., Antretter, T.: Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel. Int. J. Plast. 25, 183–204 (2009)MATHCrossRef
35.
go back to reference Mahnken, R., Wolff, M., Schneidt, A., Böhm, M.: Multi-phase transformations at large strains—thermodynamic framework and simulation. Int. J. Plast. 39, 1–26 (2012)CrossRef Mahnken, R., Wolff, M., Schneidt, A., Böhm, M.: Multi-phase transformations at large strains—thermodynamic framework and simulation. Int. J. Plast. 39, 1–26 (2012)CrossRef
36.
go back to reference Mahnken, R., Wolff, M., Cheng, C.: A multi-mechanism model for cutting simulations combining visco-plastic asymmetry and phase transformation. Int. J. Solids Struct. 50, 3045–3066 (2013)CrossRef Mahnken, R., Wolff, M., Cheng, C.: A multi-mechanism model for cutting simulations combining visco-plastic asymmetry and phase transformation. Int. J. Solids Struct. 50, 3045–3066 (2013)CrossRef
37.
go back to reference Marusich, T., Ortiz, M.: Modelling and simulation of high-speed machining. Int. J. Numer. Methods Eng. 38, 3675–3694 (1995)MATHCrossRef Marusich, T., Ortiz, M.: Modelling and simulation of high-speed machining. Int. J. Numer. Methods Eng. 38, 3675–3694 (1995)MATHCrossRef
38.
go back to reference Oxley, P.L.B.: Mechanics of Machining, an Analytical Approach to Assessing Machinability. Ellis Horwood Ltd., Chichester (1989) Oxley, P.L.B.: Mechanics of Machining, an Analytical Approach to Assessing Machinability. Ellis Horwood Ltd., Chichester (1989)
39.
go back to reference Ozel, T., Zeren, E.: Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests. J. Mater. Process. Technol. 153–154, 1019–1025 (2004)CrossRef Ozel, T., Zeren, E.: Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests. J. Mater. Process. Technol. 153–154, 1019–1025 (2004)CrossRef
40.
go back to reference Preston, D.L., Tonks, D.L., Wallace, D.C.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93, 211–220 (2003) CrossRef Preston, D.L., Tonks, D.L., Wallace, D.C.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93, 211–220 (2003) CrossRef
41.
go back to reference Samantaray, D., Mandal, S., Borah, U., Bhaduri, A.K., Sivaprasad, P.V.: A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Mater. Sci. Eng. A 526, 1–6 (2009)CrossRef Samantaray, D., Mandal, S., Borah, U., Bhaduri, A.K., Sivaprasad, P.V.: A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Mater. Sci. Eng. A 526, 1–6 (2009)CrossRef
42.
go back to reference Samantaray, D., Mandal, S., Bhaduri, A.K.: A comparative study on Johnson–Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel. Comput. Mater. Sci. 47(2), 568–576 (2009)CrossRef Samantaray, D., Mandal, S., Bhaduri, A.K.: A comparative study on Johnson–Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel. Comput. Mater. Sci. 47(2), 568–576 (2009)CrossRef
43.
go back to reference Sartkulvanich, P., Koppka, F., Altan, T.: Determination of flow stress for metal cut-ting simulation A progress report. J. Mater. Process. Technol. 146, 61–71 (2004)CrossRef Sartkulvanich, P., Koppka, F., Altan, T.: Determination of flow stress for metal cut-ting simulation A progress report. J. Mater. Process. Technol. 146, 61–71 (2004)CrossRef
44.
go back to reference Shi, B., Attia, H., Tounsi, N.: Identification of material constitutive laws for machining part I: an analytical model describing the stress, strain, strain rate, and temperature fields in the primary shear zone in orthogonal metal cutting. J. Manuf. Sci. Eng. 132, 051008-1 (2010) Shi, B., Attia, H., Tounsi, N.: Identification of material constitutive laws for machining part I: an analytical model describing the stress, strain, strain rate, and temperature fields in the primary shear zone in orthogonal metal cutting. J. Manuf. Sci. Eng. 132, 051008-1 (2010)
45.
go back to reference Simo, J.C., Hughes, T.J.R.: Computational Inelasticity, Interdisciplinary Applied Mathematics, vol. 7. Mechanics and Materials. Springer (1998) Simo, J.C., Hughes, T.J.R.: Computational Inelasticity, Interdisciplinary Applied Mathematics, vol. 7. Mechanics and Materials. Springer (1998)
46.
go back to reference Stouffer, D.C., Dame, L.T.: Inelastic Deformation of Metals. Wiley, New York (1996) Stouffer, D.C., Dame, L.T.: Inelastic Deformation of Metals. Wiley, New York (1996)
47.
go back to reference Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1. Academic press, New York (1971) Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1. Academic press, New York (1971)
48.
go back to reference Spitzig, W.A., Sober, R.J., Richmond, O.: Pressure dependence of yielding and associated volume expansion in tempered martensite. Acta Metall. 23, 885–893 (1975)CrossRef Spitzig, W.A., Sober, R.J., Richmond, O.: Pressure dependence of yielding and associated volume expansion in tempered martensite. Acta Metall. 23, 885–893 (1975)CrossRef
49.
go back to reference Umbrello, D., Saoubi, R.M., Outeiro, J.C.: The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int. J. Mach. Tools Manuf. 47, 462–470 (2007)CrossRef Umbrello, D., Saoubi, R.M., Outeiro, J.C.: The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int. J. Mach. Tools Manuf. 47, 462–470 (2007)CrossRef
50.
go back to reference Voyiadjis, G.Z., Abed, F.H.: Microstructural based models for BCC and FCC metals with temperature and strain rate dependency. Mech. Mater. Mech. Mater. 37(2–3), 355–378 (2005)CrossRef Voyiadjis, G.Z., Abed, F.H.: Microstructural based models for BCC and FCC metals with temperature and strain rate dependency. Mech. Mater. Mech. Mater. 37(2–3), 355–378 (2005)CrossRef
51.
go back to reference Voyiadjis, G.Z., Almasri, A.H.: A physically based constitutive model for FCC metals with applications to dynamic hardness. Mech. Mater. 40, 549–563 (2008)CrossRef Voyiadjis, G.Z., Almasri, A.H.: A physically based constitutive model for FCC metals with applications to dynamic hardness. Mech. Mater. 40, 549–563 (2008)CrossRef
52.
go back to reference Zerilli, F.J., Armstrong, R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61(5), 1816 (1987)CrossRef Zerilli, F.J., Armstrong, R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61(5), 1816 (1987)CrossRef
53.
go back to reference Zerilli, F.J.: Dislocation-mechanics-based constitutive equations. Metall. Mater. Trans. A 35, 2547–2555 (2004)CrossRef Zerilli, F.J.: Dislocation-mechanics-based constitutive equations. Metall. Mater. Trans. A 35, 2547–2555 (2004)CrossRef
54.
go back to reference Zhan, H.Y., Wang, G., Kent, D., Dargusch, M.: Constitutive modelling of the flow behaviour of a titanium alloy at high strain rates and elevated temperatures using the Johnson–Cook and modified Zerilli–Armstrong models. Mater. Sci. Eng. A 612, 71–79 (2014)CrossRef Zhan, H.Y., Wang, G., Kent, D., Dargusch, M.: Constitutive modelling of the flow behaviour of a titanium alloy at high strain rates and elevated temperatures using the Johnson–Cook and modified Zerilli–Armstrong models. Mater. Sci. Eng. A 612, 71–79 (2014)CrossRef
Metadata
Title
A modified Zerilli–Armstrong model as the asymmetric visco-plastic part of a multi-mechanism model for cutting simulations
Authors
C. Cheng
R. Mahnken
Publication date
26-05-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 9/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-01982-6

Other articles of this Issue 9/2021

Archive of Applied Mechanics 9/2021 Go to the issue

Premium Partners