Skip to main content
Top
Published in:

26-03-2022 | Original Article

A monotone iterative technique combined to finite element method for solving reaction-diffusion problems pertaining to non-integer derivative

Authors: Abdelouahed Alla Hamou, El Houssine Azroul, Zakia Hammouch, Abdelilah Lamrani Alaoui

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper focuses on some mathematical and numerical aspects of reaction-diffusion problems pertaining to non-integer time derivatives using the well-known method of lower and upper solutions combined with the monotone iterative technique. First, we study the existence and uniqueness of weak solutions of the proposed models, then we prove some comparison results. Besides, linear finite element spaces on triangles are used to discretize the problem in space, whereas the generalized backward-Euler method is adopted to approximate the time non-integer derivative. Furthermore, the idea of this method is to construct two sequences of solutions of a linear initial value problem which are easier to compute and converge to the solution of the nonlinear problem. We show numerically through two examples that this convergence requires only few iterations. Some well-known examples with exact solutions and numerical results based on the finite element method in 2D are provided to validate the theoretical results. As a result, we confirm that the proposed method is efficient and easy to use to overcome the convergence and stability difficulties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mech Time-dependent Mater 9(1):15–34 Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mech Time-dependent Mater 9(1):15–34
2.
go back to reference Kumar D, Baleanu D (2019) Fractional calculus and its applications in physics. Front Phys 7:81 Kumar D, Baleanu D (2019) Fractional calculus and its applications in physics. Front Phys 7:81
3.
go back to reference Hilfer R (2000) Applications of fractional calculus in physics. World ScientificMATH Hilfer R (2000) Applications of fractional calculus in physics. World ScientificMATH
4.
go back to reference Tarasov VE (2013) Review of some promising fractional physical models. Int J Mod Phys B 27(09):1330005MathSciNetMATH Tarasov VE (2013) Review of some promising fractional physical models. Int J Mod Phys B 27(09):1330005MathSciNetMATH
5.
go back to reference Zhou H, Yang S, Zhang S (2018) Conformable derivative approach to anomalous diffusion. Physica A 491:1001–1013MathSciNetMATH Zhou H, Yang S, Zhang S (2018) Conformable derivative approach to anomalous diffusion. Physica A 491:1001–1013MathSciNetMATH
6.
go back to reference Tuan NH, Ngoc TB, Baleanu D, O’Regan D (2020) On well-posedness of the sub-diffusion equation with conformable derivative model. Commun Nonlinear Sci Numer Simul 89:105332MathSciNetMATH Tuan NH, Ngoc TB, Baleanu D, O’Regan D (2020) On well-posedness of the sub-diffusion equation with conformable derivative model. Commun Nonlinear Sci Numer Simul 89:105332MathSciNetMATH
7.
go back to reference Drapaca C, Sivaloganathan S (2012) A fractional model of continuum mechanics. J Elast 107(2):105–123MathSciNetMATH Drapaca C, Sivaloganathan S (2012) A fractional model of continuum mechanics. J Elast 107(2):105–123MathSciNetMATH
8.
go back to reference Atanacković TM, Pilipović S, Stanković B, Zorica D (2014) Fractional calculus with applications in mechanics. Wiley Online Library, HobokenMATH Atanacković TM, Pilipović S, Stanković B, Zorica D (2014) Fractional calculus with applications in mechanics. Wiley Online Library, HobokenMATH
9.
go back to reference Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier, AmsterdamMATH Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier, AmsterdamMATH
10.
go back to reference Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, AmsterdamMATH Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, AmsterdamMATH
11.
go back to reference Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. WileyMATH Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. WileyMATH
12.
go back to reference Zhou Y, Wang J, Zhang L (2016) Basic theory of fractional differential equations. World scientific Zhou Y, Wang J, Zhang L (2016) Basic theory of fractional differential equations. World scientific
13.
go back to reference Ma X, Wu W, Zeng B, Wang Y, Wu X (2020) The conformable fractional grey system model. ISA Trans 96:255–271 Ma X, Wu W, Zeng B, Wang Y, Wu X (2020) The conformable fractional grey system model. ISA Trans 96:255–271
14.
go back to reference Boccaletti S, Ditto W, Mindlin G, Atangana A (2020) Modeling and forecasting of epidemic spreading: the case of COVID-19 and beyond. Chaos Solitons Fract 135:109794 Boccaletti S, Ditto W, Mindlin G, Atangana A (2020) Modeling and forecasting of epidemic spreading: the case of COVID-19 and beyond. Chaos Solitons Fract 135:109794
15.
go back to reference Singh J, Kumar D, Hammouch Z, Atangana A (2018) A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl Math Comput 316:504–515MathSciNetMATH Singh J, Kumar D, Hammouch Z, Atangana A (2018) A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl Math Comput 316:504–515MathSciNetMATH
16.
go back to reference Almeida R, da Cruz AMB, Martins N, Monteiro MTT (2019) An epidemiological MSEIR model described by the Caputo fractional derivative. Int J Dyn Control 7(2):776–784MathSciNet Almeida R, da Cruz AMB, Martins N, Monteiro MTT (2019) An epidemiological MSEIR model described by the Caputo fractional derivative. Int J Dyn Control 7(2):776–784MathSciNet
17.
go back to reference Royston P, Ambler G, Sauerbrei W (1999) The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol 28(5):964–974 Royston P, Ambler G, Sauerbrei W (1999) The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol 28(5):964–974
18.
go back to reference Goufo EFD, Maritz R, Munganga J (2014) Some properties of the Kermack-McKendrick epidemic model with fractional derivative and nonlinear incidence. Adv Differ Equ 2014(1):1–9MathSciNetMATH Goufo EFD, Maritz R, Munganga J (2014) Some properties of the Kermack-McKendrick epidemic model with fractional derivative and nonlinear incidence. Adv Differ Equ 2014(1):1–9MathSciNetMATH
19.
go back to reference Alla Hamou A, Azroul E, Hammouch Z, Alaoui AL (2021) A Fractional Multi-Order Model to Predict the COVID-19 Outbreak in Morocco. Appl Comput Math 20(1):177–203MathSciNetMATH Alla Hamou A, Azroul E, Hammouch Z, Alaoui AL (2021) A Fractional Multi-Order Model to Predict the COVID-19 Outbreak in Morocco. Appl Comput Math 20(1):177–203MathSciNetMATH
20.
go back to reference Meerschaert MM, Sikorskii A (2011) Stochastic models for fractional calculus, vol 43. Walter de Gruyter Meerschaert MM, Sikorskii A (2011) Stochastic models for fractional calculus, vol 43. Walter de Gruyter
21.
go back to reference Çenesiz Y, Kurt A, Nane E (2017) Stochastic solutions of conformable fractional Cauchy problems. Stat Probab Lett 124:126–131MathSciNetMATH Çenesiz Y, Kurt A, Nane E (2017) Stochastic solutions of conformable fractional Cauchy problems. Stat Probab Lett 124:126–131MathSciNetMATH
22.
go back to reference Yang Q, Chen D, Zhao T, Chen Y (2016) Fractional calculus in image processing: a review. Fract Calc Appl Anal 19(5):1222–1249MathSciNetMATH Yang Q, Chen D, Zhao T, Chen Y (2016) Fractional calculus in image processing: a review. Fract Calc Appl Anal 19(5):1222–1249MathSciNetMATH
23.
go back to reference Larnier S, Mecca R (2012) Fractional-order diffusion for image reconstruction, In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 1057–1060 Larnier S, Mecca R (2012) Fractional-order diffusion for image reconstruction, In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 1057–1060
24.
go back to reference Bai J, Feng X-C (2007) Fractional-order anisotropic diffusion for image denoising. IEEE Trans Image Process 16(10):2492–2502MathSciNet Bai J, Feng X-C (2007) Fractional-order anisotropic diffusion for image denoising. IEEE Trans Image Process 16(10):2492–2502MathSciNet
25.
go back to reference Cruz-Duarte JM, Rosales-Garcia J, Correa-Cely CR, Garcia-Perez A, Avina-Cervantes JG (2018) A closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications. Commun Nonlinear Sci Numer Simul 61:138–148MathSciNetMATH Cruz-Duarte JM, Rosales-Garcia J, Correa-Cely CR, Garcia-Perez A, Avina-Cervantes JG (2018) A closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications. Commun Nonlinear Sci Numer Simul 61:138–148MathSciNetMATH
26.
go back to reference Epstein CL (2007) Introduction to the mathematics of medical imaging. SIAM Epstein CL (2007) Introduction to the mathematics of medical imaging. SIAM
27.
go back to reference Deng W, Li C (2005) Chaos synchronization of the fractional Lü system. Physica A 353:61–72 Deng W, Li C (2005) Chaos synchronization of the fractional Lü system. Physica A 353:61–72
28.
go back to reference Hartley TT, Lorenzo CF, Qammer HK (1995) Chaos in a fractional order Chua’s system. IEEE Trans Circ Syst I 42(8):485–490 Hartley TT, Lorenzo CF, Qammer HK (1995) Chaos in a fractional order Chua’s system. IEEE Trans Circ Syst I 42(8):485–490
29.
go back to reference Li C, Chen G (2004) Chaos in the fractional order Chen system and its control. Chaos Solitons Fract 22(3):549–554MATH Li C, Chen G (2004) Chaos in the fractional order Chen system and its control. Chaos Solitons Fract 22(3):549–554MATH
31.
go back to reference Sweilam NH, El-Sayed AAE, Boulaaras S (2021) Fractional-order advection-dispersion problem solution via the spectral collocation method and the non-standard finite difference technique. Chaos Solitons Fract 144:110736MathSciNetMATH Sweilam NH, El-Sayed AAE, Boulaaras S (2021) Fractional-order advection-dispersion problem solution via the spectral collocation method and the non-standard finite difference technique. Chaos Solitons Fract 144:110736MathSciNetMATH
32.
go back to reference Kumar S, Pandey P (2020) A Legendre spectral finite difference method for the solution of non-linear space-time fractional Burger’s-Huxley and reaction-diffusion equation with Atangana-Baleanu derivative. Chaos Solitons Fract 130:109402MathSciNetMATH Kumar S, Pandey P (2020) A Legendre spectral finite difference method for the solution of non-linear space-time fractional Burger’s-Huxley and reaction-diffusion equation with Atangana-Baleanu derivative. Chaos Solitons Fract 130:109402MathSciNetMATH
33.
go back to reference Hu Y, Li C, Li H (2017) The finite difference method for Caputo-type parabolic equation with fractional Laplacian: one-dimension case. Chaos Solitons Fract 102:319–326MathSciNetMATH Hu Y, Li C, Li H (2017) The finite difference method for Caputo-type parabolic equation with fractional Laplacian: one-dimension case. Chaos Solitons Fract 102:319–326MathSciNetMATH
34.
go back to reference Jin B, Lazarov R, Zhou Z (2013) Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J Numer Anal 51(1):445–466MathSciNetMATH Jin B, Lazarov R, Zhou Z (2013) Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J Numer Anal 51(1):445–466MathSciNetMATH
35.
go back to reference Zhao X, Hu X, Cai W, Karniadakis GE (2017) Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput Methods Appl Mech Eng 325:56–76MathSciNetMATH Zhao X, Hu X, Cai W, Karniadakis GE (2017) Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput Methods Appl Mech Eng 325:56–76MathSciNetMATH
36.
go back to reference Deng W (2009) Finite element method for the space and time fractional Fokker-Planck equation. SIAM J Numer Anal 47(1):204–226MathSciNetMATH Deng W (2009) Finite element method for the space and time fractional Fokker-Planck equation. SIAM J Numer Anal 47(1):204–226MathSciNetMATH
37.
go back to reference Jin B, Lazarov R, Zhou Z (2016) A Petrov-Galerkin finite element method for fractional convection-diffusion equations. SIAM J Numer Anal 54(1):481–503MathSciNetMATH Jin B, Lazarov R, Zhou Z (2016) A Petrov-Galerkin finite element method for fractional convection-diffusion equations. SIAM J Numer Anal 54(1):481–503MathSciNetMATH
38.
go back to reference Zheng Y, Zhao Z (2020) The time discontinuous space-time finite element method for fractional diffusion-wave equation. Appl Numer Math 150:105–116MathSciNetMATH Zheng Y, Zhao Z (2020) The time discontinuous space-time finite element method for fractional diffusion-wave equation. Appl Numer Math 150:105–116MathSciNetMATH
40.
go back to reference Kumar D, Chaudhary S, Kumar VS (2019) Finite element analysis for coupled time-fractional nonlinear diffusion system. Comput Math Appl 78(6):1919–1936MathSciNetMATH Kumar D, Chaudhary S, Kumar VS (2019) Finite element analysis for coupled time-fractional nonlinear diffusion system. Comput Math Appl 78(6):1919–1936MathSciNetMATH
41.
go back to reference Gao F, Wang X (2014) A modified weak Galerkin finite element method for a class of parabolic problems. J Comput Appl Math 271:1–19MathSciNetMATH Gao F, Wang X (2014) A modified weak Galerkin finite element method for a class of parabolic problems. J Comput Appl Math 271:1–19MathSciNetMATH
44.
go back to reference Xu T, Liu F, Lü S, Anh VV (2020) Finite difference/finite element method for two-dimensional time-space fractional Bloch-Torrey equations with variable coefficients on irregular convex domains. Comput Math Appl 80(12):3173–3192MathSciNetMATH Xu T, Liu F, Lü S, Anh VV (2020) Finite difference/finite element method for two-dimensional time-space fractional Bloch-Torrey equations with variable coefficients on irregular convex domains. Comput Math Appl 80(12):3173–3192MathSciNetMATH
45.
go back to reference Liu X, Yang X (2021) Mixed finite element method for the nonlinear time-fractional stochastic fourth-order reaction-diffusion equation. Comput Math Appl 84:39–55MathSciNetMATH Liu X, Yang X (2021) Mixed finite element method for the nonlinear time-fractional stochastic fourth-order reaction-diffusion equation. Comput Math Appl 84:39–55MathSciNetMATH
46.
go back to reference Jia J, Wang H, Zheng X (2021) A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions. Appl Numer Math 163:15–29MathSciNetMATH Jia J, Wang H, Zheng X (2021) A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions. Appl Numer Math 163:15–29MathSciNetMATH
47.
go back to reference Li D, Liao H-L, Sun W, Wang J, Zhang J, Analysis of \(L1\)-Galerkin FEMs for time-fractional nonlinear parabolic problems, arXiv preprint arXiv:1612.00562 Li D, Liao H-L, Sun W, Wang J, Zhang J, Analysis of \(L1\)-Galerkin FEMs for time-fractional nonlinear parabolic problems, arXiv preprint arXiv:​1612.​00562
48.
go back to reference Pao C (1993) Positive solutions and dynamics of a finite difference reaction-diffusion system. Num Methods Part Differ Equ 9(3):285–311MathSciNetMATH Pao C (1993) Positive solutions and dynamics of a finite difference reaction-diffusion system. Num Methods Part Differ Equ 9(3):285–311MathSciNetMATH
49.
go back to reference Pao C (1996) Blowing-up and asymptotic behaviour of solutions for a finite difference system. Appl Anal 62(1–2):29–38MathSciNetMATH Pao C (1996) Blowing-up and asymptotic behaviour of solutions for a finite difference system. Appl Anal 62(1–2):29–38MathSciNetMATH
51.
go back to reference Parter SV (1964) Mildly nonlinear elliptic partial differential equations and their numerical solution. I, Tech. Rep., Wisconsin Univ Madison Mathematics Research Center R Parter SV (1964) Mildly nonlinear elliptic partial differential equations and their numerical solution. I, Tech. Rep., Wisconsin Univ Madison Mathematics Research Center R
52.
go back to reference Greenspan D, Parter SV (1964) Mildly nonlinear elliptic partial differential equations and their numerical solution. Tech. Rep., Wisconsin Univ Madison Mathematics Research Center, II Greenspan D, Parter SV (1964) Mildly nonlinear elliptic partial differential equations and their numerical solution. Tech. Rep., Wisconsin Univ Madison Mathematics Research Center, II
53.
go back to reference Walter W (1968) Die Linienmethode bei nichtlinearen parabolischen Differentialgleichungen. Numer Math 12(4):307–321MathSciNetMATH Walter W (1968) Die Linienmethode bei nichtlinearen parabolischen Differentialgleichungen. Numer Math 12(4):307–321MathSciNetMATH
54.
go back to reference Pao C (2002) Finite difference reaction-diffusion systems with coupled boundary conditions and time delays. J Math Anal Appl 272(2):407–434MathSciNetMATH Pao C (2002) Finite difference reaction-diffusion systems with coupled boundary conditions and time delays. J Math Anal Appl 272(2):407–434MathSciNetMATH
55.
go back to reference Pao C (2001) Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions. J Comput Appl Math 136(1–2):227–243MathSciNetMATH Pao C (2001) Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions. J Comput Appl Math 136(1–2):227–243MathSciNetMATH
56.
go back to reference Pao C-V (2012) Nonlinear parabolic and elliptic equations. Springer Science & Business Media Pao C-V (2012) Nonlinear parabolic and elliptic equations. Springer Science & Business Media
57.
58.
go back to reference Pao C (1985) Monotone iterative methods for finite difference system of reaction-diffusion equations. Numer Math 46(4):571–586MathSciNetMATH Pao C (1985) Monotone iterative methods for finite difference system of reaction-diffusion equations. Numer Math 46(4):571–586MathSciNetMATH
64.
go back to reference Alla Hamou A, Azroul E, Alaoui A (2020) Monotone iterative technique for nonlinear periodic time fractional parabolic problems. Adv Theory Nonlinear Anal Appl 4(3):194–213 Alla Hamou A, Azroul E, Alaoui A (2020) Monotone iterative technique for nonlinear periodic time fractional parabolic problems. Adv Theory Nonlinear Anal Appl 4(3):194–213
65.
go back to reference Brezis H, Ciarlet PG, Lions JL (1999) Analyse fonctionnelle: théorie et applications, vol 91. Dunod Paris Brezis H, Ciarlet PG, Lions JL (1999) Analyse fonctionnelle: théorie et applications, vol 91. Dunod Paris
66.
67.
go back to reference Alla hamou A, Azroul E, Hammouch Z, Lamrani alaoui A, Modeling and numerical investigation of a Conformable co-infection model for describing Hantavirus of the European moles, math. meth. app. sci. Preprint Alla hamou A, Azroul E, Hammouch Z, Lamrani alaoui A, Modeling and numerical investigation of a Conformable co-infection model for describing Hantavirus of the European moles, math. meth. app. sci. Preprint
Metadata
Title
A monotone iterative technique combined to finite element method for solving reaction-diffusion problems pertaining to non-integer derivative
Authors
Abdelouahed Alla Hamou
El Houssine Azroul
Zakia Hammouch
Abdelilah Lamrani Alaoui
Publication date
26-03-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01635-4