Skip to main content
Top
Published in:

13-11-2023

A Multi-attention Triple Decoder Deep Convolution Network for Breast Cancer Segmentation Using Ultrasound Images

Authors: Muhammad Junaid Umer, Muhammad Sharif, Mudassar Raza

Published in: Cognitive Computation | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Breast cancer (BC) is a widely diagnosed deadly disease commonly present in middle-aged women around the globe. Ultrasound (U/S) imaging is widely used for the early prediction and segmentation of BC due to low radiation and cheapness. Manual BC segmentation from ultrasound imaging is a complex and laborious task due to inherited noise. Many deep learning-based breast cancer diagnostic methods are presented that can further be enhanced to improve the segmentation performance. This work proposed a U-shaped auto encoder-based multi-attention triple decoder convolution neural network for BC segmentation from U/S images. To capture multi-scale diverse spatial image features this work introduced a multi-scale convolution operation-based encoder network. To process the multi-scale learned diverse spatial features in the encoder path multi-scale triple decoder network is designed that was not found in earlier studies. To highlight the tumor region at different scales multi-attention mechanism is introduced in each decoder network. The multi-attention mechanism is designed to suppress the other region information and to highlight the tumor region features at different scales. The proposed deep network produced the segmentation dice of 90.45% on the UDIAT dataset and the segmentation dice of 89.13% on the BUSI dataset. The testing Jaccard index of 83.40% is recorded on the UDIAT dataset and a Jaccard index of 82.31% is recorded on the BUSI dataset. The result comparison with existing methods shows that our method achieved the highest results. The segmentation performance of the triple decoder-based BC segmentation model suggested that it can effectively be used to automate the manual breast cancer segmentation task from ultrasound images.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.CrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.CrossRef
4.
go back to reference Murtaza G, Shuib L, Wahab AWA, Mujtaba G, Nweke HF, Al-garadi MA, Zulfiqar F, Raza G, Azmi NA. Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges. Artif Intell Rev. 2019;1–66. Murtaza G, Shuib L, Wahab AWA, Mujtaba G, Nweke HF, Al-garadi MA, Zulfiqar F, Raza G, Azmi NA. Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges. Artif Intell Rev. 2019;1–66.
5.
go back to reference Debelee TG, Schwenker F, Ibenthal A, Yohannes D. Survey of deep learning in breast cancer image analysis. Evol Syst. 2020;11:143–63.CrossRef Debelee TG, Schwenker F, Ibenthal A, Yohannes D. Survey of deep learning in breast cancer image analysis. Evol Syst. 2020;11:143–63.CrossRef
6.
go back to reference Sabtu SN, Abdul Sani SF, Bradley DA, Looi LM, Osman Z. A review of the applications of Raman spectroscopy for breast cancer tissue diagnostic and their histopathological classification of epithelial to mesenchymal transition. J Raman Spectrosc. 2020;51:380–9.CrossRef Sabtu SN, Abdul Sani SF, Bradley DA, Looi LM, Osman Z. A review of the applications of Raman spectroscopy for breast cancer tissue diagnostic and their histopathological classification of epithelial to mesenchymal transition. J Raman Spectrosc. 2020;51:380–9.CrossRef
8.
go back to reference Jahwar AF, Abdulazeez AM. Segmentation and classification for breast cancer ultrasound images using deep learning techniques: a review. In: 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA). IEEE. 2022;225–230 Jahwar AF, Abdulazeez AM. Segmentation and classification for breast cancer ultrasound images using deep learning techniques: a review. In: 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA). IEEE. 2022;225–230
11.
go back to reference Wang Q, Chen H, Luo G, Li B, Shang H, Shao H, Sun S, Wang Z, Wang K, Cheng W. Performance of novel deep learning network with the incorporation of the automatic segmentation network for diagnosis of breast cancer in automated breast ultrasound. Eur Radiol. 2022;32:7163–72. https://doi.org/10.1007/s00330-022-08836-x.CrossRef Wang Q, Chen H, Luo G, Li B, Shang H, Shao H, Sun S, Wang Z, Wang K, Cheng W. Performance of novel deep learning network with the incorporation of the automatic segmentation network for diagnosis of breast cancer in automated breast ultrasound. Eur Radiol. 2022;32:7163–72. https://​doi.​org/​10.​1007/​s00330-022-08836-x.CrossRef
19.
go back to reference Farooq MA, Gong ZX, Liu Y, Zubair M, Manzoor A, Zhang G. Breast cancer detection from ultrasound images using attention U-nets model. In: Fourteenth International Conference on Digital Image Processing (ICDIP 2022). SPIE. 2022;161–174. Farooq MA, Gong ZX, Liu Y, Zubair M, Manzoor A, Zhang G. Breast cancer detection from ultrasound images using attention U-nets model. In: Fourteenth International Conference on Digital Image Processing (ICDIP 2022). SPIE. 2022;161–174.
21.
go back to reference Meraj T, Alosaimi W, Alouffi B, Rauf HT, Kumar SA, Damaševičius R, Alyami H. A quantization assisted U-Net study with ICA and deep features fusion for breast cancer identification using ultrasonic data. PeerJ Comput Sci. 2021;7: e805.CrossRef Meraj T, Alosaimi W, Alouffi B, Rauf HT, Kumar SA, Damaševičius R, Alyami H. A quantization assisted U-Net study with ICA and deep features fusion for breast cancer identification using ultrasonic data. PeerJ Comput Sci. 2021;7: e805.CrossRef
36.
go back to reference Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41.CrossRef Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41.CrossRef
37.
go back to reference Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, editors. Deep Learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2018. p. 3–11.CrossRef Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, editors. Deep Learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2018. p. 3–11.CrossRef
38.
go back to reference Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV). 2018;801–818. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV). 2018;801–818.
39.
go back to reference Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017;2881–2890. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017;2881–2890.
40.
go back to reference Su R, Zhang D, Liu J, Cheng C. MSU-net: multi-scale U-net for 2D medical image segmentation. Front Genet. 2021;12: 639930.CrossRef Su R, Zhang D, Liu J, Cheng C. MSU-net: multi-scale U-net for 2D medical image segmentation. Front Genet. 2021;12: 639930.CrossRef
41.
go back to reference Shareef B, Vakanski A, Xian M, Freer PE. ESTAN: enhanced small tumor-aware network for breast ultrasound image segmentation. ArXiv Prepr. 2020;ArXiv200912894. Shareef B, Vakanski A, Xian M, Freer PE. ESTAN: enhanced small tumor-aware network for breast ultrasound image segmentation. ArXiv Prepr. 2020;ArXiv200912894.
42.
go back to reference Yang K, Suzuki A, Ye J, Nosato H, Izumori A, Sakanashi H. CTG-Net: Cross-task guided network for breast ultrasound diagnosis. PLoS ONE. 2022;17: e0271106.CrossRef Yang K, Suzuki A, Ye J, Nosato H, Izumori A, Sakanashi H. CTG-Net: Cross-task guided network for breast ultrasound diagnosis. PLoS ONE. 2022;17: e0271106.CrossRef
43.
go back to reference Zhang M, Huang A, Yang D, Xu R, Wu Y. Boundary-oriented network for automatic breast tumor segmentation in ultrasound images. Available SSRN 4098691. Zhang M, Huang A, Yang D, Xu R, Wu Y. Boundary-oriented network for automatic breast tumor segmentation in ultrasound images. Available SSRN 4098691.
44.
go back to reference Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y. TransUNet: transformers make strong encoders for medical image segmentation. 2021. Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y. TransUNet: transformers make strong encoders for medical image segmentation. 2021.
45.
go back to reference Zhao X, Jia H, Pang Y, Lv L, Tian F, Zhang L, Sun W, Lu H. M$^{2}$SNet: multi-scale in multi-scale subtraction network for medical image segmentation. 2023. Zhao X, Jia H, Pang Y, Lv L, Tian F, Zhang L, Sun W, Lu H. M$^{2}$SNet: multi-scale in multi-scale subtraction network for medical image segmentation. 2023.
46.
go back to reference Shareef B, Xian M, Vakanski A. STAN: small tumor-aware network for breast ultrasound image segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE. 2020;1–5. Shareef B, Xian M, Vakanski A. STAN: small tumor-aware network for breast ultrasound image segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE. 2020;1–5.
Metadata
Title
A Multi-attention Triple Decoder Deep Convolution Network for Breast Cancer Segmentation Using Ultrasound Images
Authors
Muhammad Junaid Umer
Muhammad Sharif
Mudassar Raza
Publication date
13-11-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10214-8

Other articles of this Issue 2/2024

Cognitive Computation 2/2024 Go to the issue

Premium Partner