Skip to main content
Top
Published in:

01-12-2016 | Original Article

A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization

Authors: Robert A. Bridges, John Collins, Erik M. Ferragut, Jason Laska, Blair D. Sullivan

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work presents a modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in streaming graph data. Our goal is to detect changes at multiple levels of granularity, thereby identifying specific nodes and subgraphs causing a graph to appear anomalously. In particular, the framework detects changes in community membership, density, and node degree in a sequence of graphs where these are relatively stable. In route to this end, we introduce a new graph model, a generalization of the BTER model of Seshadhri et al., by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. This technique provides insight into a graph’s structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitates intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. To illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision >0.786.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Denoted here as ER(np), in which n nodes are fixed and edges occur independently with probability p.
 
2
F1 is defined as the harmonic average of Precision, P, and Recall, R. Specifically, F1:= (average\((P^{-1}\), \(R^{-1}))^{-1} = 2PR/(P+R)\).
 
Literature
go back to reference Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and description: a survey. Data Min Knowl Discov 29(3):626–688MathSciNetCrossRef Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and description: a survey. Data Min Knowl Discov 29(3):626–688MathSciNetCrossRef
go back to reference Bridges RA, Collins JP, Ferragut EM, Laska JA, Sullivan BD (2015) Multi-level anomaly detection on time-varying graph data. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, pp 579–583 Bridges RA, Collins JP, Ferragut EM, Laska JA, Sullivan BD (2015) Multi-level anomaly detection on time-varying graph data. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, pp 579–583
go back to reference Chakrabarti D, Faloutsos C (2006) Graph mining: laws, generators, and algorithms. ACM Comput Surv (CSUR) 38(1):2CrossRef Chakrabarti D, Faloutsos C (2006) Graph mining: laws, generators, and algorithms. ACM Comput Surv (CSUR) 38(1):2CrossRef
go back to reference Eberle W, Holder L (2007) Anomaly detection in data represented as graphs. Intell Data Anal 11(6):663–689 Eberle W, Holder L (2007) Anomaly detection in data represented as graphs. Intell Data Anal 11(6):663–689
go back to reference Erdős P, Rényi A (1959) On random graphs. Publ Math Debr 6:290–297MATH Erdős P, Rényi A (1959) On random graphs. Publ Math Debr 6:290–297MATH
go back to reference Ferragut EM, Laska J, Bridges RA (2012) A new, principled approach to anomaly detection. In: International conference on machine learning and applications, vol 2. IEEE, pp 210–215 Ferragut EM, Laska J, Bridges RA (2012) A new, principled approach to anomaly detection. In: International conference on machine learning and applications, vol 2. IEEE, pp 210–215
go back to reference Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in science conference (SciPy2008). Pasadena, CA, USA, pp 11–15 Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in science conference (SciPy2008). Pasadena, CA, USA, pp 11–15
go back to reference Harshaw CR, Bridges RA, Iannacone MD, Reed JW, Goodall JR (2016) Graphprints: towards a graph analytic method for network anomaly detection. In: Proceedings of the 11th annual cyber and information security research conference. ACM, p 15 Harshaw CR, Bridges RA, Iannacone MD, Reed JW, Goodall JR (2016) Graphprints: towards a graph analytic method for network anomaly detection. In: Proceedings of the 11th annual cyber and information security research conference. ACM, p 15
go back to reference Kolda TG, Pinar A, Plantenga T, Seshadhri C (2014) A scalable generative graph model with community structure. SIAM J Sci Comput 36(5):C424–C452MathSciNetCrossRefMATH Kolda TG, Pinar A, Plantenga T, Seshadhri C (2014) A scalable generative graph model with community structure. SIAM J Sci Comput 36(5):C424–C452MathSciNetCrossRefMATH
go back to reference Miller BA, Stephens LH, Bliss NT (2012) Goodness-of-fit statistics for anomaly detection in Chung–Lu random graphs. In: International conference on acoustics, speech and signal processing. IEEE, pp 3265–3268 Miller BA, Stephens LH, Bliss NT (2012) Goodness-of-fit statistics for anomaly detection in Chung–Lu random graphs. In: International conference on acoustics, speech and signal processing. IEEE, pp 3265–3268
go back to reference Miller BA, Bliss NT, Wolfe PJ, Beard MS (2013) Detection theory for graphs. Linc Lab J 20(1):10–30 Miller BA, Bliss NT, Wolfe PJ, Beard MS (2013) Detection theory for graphs. Linc Lab J 20(1):10–30
go back to reference Moreno S, Neville J (2013) Network hypothesis testing using mixed kronecker product graph models. In: IEEE 13th international conference on data mining (ICDM). IEEE, pp 1163–1168 Moreno S, Neville J (2013) Network hypothesis testing using mixed kronecker product graph models. In: IEEE 13th international conference on data mining (ICDM). IEEE, pp 1163–1168
go back to reference Peel L, Clauset A (2015) Detecting change points in the large-scale structure of evolving networks. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence. AAAI Press, pp 2914–2920 Peel L, Clauset A (2015) Detecting change points in the large-scale structure of evolving networks. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence. AAAI Press, pp 2914–2920
go back to reference Satuluri V, Parthasarathy S (2009) Scalable graph clustering using stochastic flows: applications to community discovery. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 737–746 Satuluri V, Parthasarathy S (2009) Scalable graph clustering using stochastic flows: applications to community discovery. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 737–746
go back to reference Seshadhri C, Kolda TG, Pinar A (2012) Community structure and scale-free collections of Erdős–Rényi graphs. Phys Rev E 85(5):056109CrossRef Seshadhri C, Kolda TG, Pinar A (2012) Community structure and scale-free collections of Erdős–Rényi graphs. Phys Rev E 85(5):056109CrossRef
go back to reference Van Dongen SM (2000) Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht Van Dongen SM (2000) Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht
go back to reference Wong PC, Foote H, Mackey P, Chin G, Sofia H, Thomas J (2008) A dynamic multiscale magnifying tool for exploring large sparse graphs. Inf Vis 7(2):105–117CrossRef Wong PC, Foote H, Mackey P, Chin G, Sofia H, Thomas J (2008) A dynamic multiscale magnifying tool for exploring large sparse graphs. Inf Vis 7(2):105–117CrossRef
Metadata
Title
A multi-level anomaly detection algorithm for time-varying graph data with interactive visualization
Authors
Robert A. Bridges
John Collins
Erik M. Ferragut
Jason Laska
Blair D. Sullivan
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0409-y

Premium Partner