Skip to main content
Top
Published in: International Journal of Material Forming 1/2018

19-11-2016 | Original Research

A multiphase Eulerian approach for modelling the polymer injection into a textured mould

Authors: Rebecca Nakhoul, Patrice Laure, Luisa Silva, Michel Vincent

Published in: International Journal of Material Forming | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Micro-injection moulding is frequently used for the fabrication of devices in many different fields such as micro-medical technologies, micro-optics and micro-mechanics thanks to its effectiveness for mass production. This work focuses mainly on offering numerical methodology to model the injection into textured moulds. Such approach can predict the different filling scenarios of the micro-details and consequently can provide optimal operating conditions (mould and melt temperatures, flow rate) according to the desired final part quality. In fact, numerical simulations made with industrial software can only describe the injection process at the macroscopic scale where the micro details are not detected. Although the melt temperature and front evolution are tracked throughout time, neither the micro details nor the local heat transfer are properly represented. Since the latter impacts the local viscosity and solidification, simulation of both mould and cavity temperature evolutions is primordial to insure a complete and accurate representation of textured mould filling. The present computations are made at both macro- and micro- scales by using a full Eulerian approach in which the three phases (melt, mould and air) are described by level-set functions. Our numerical approach is checked to the replication of a textured mould for which two dimensional computations are relevant. This replication is properly modelled by taking into account viscosity dependence with temperature in the thermal boundary layer at the melt/mould interface. In particular the expected solidification below a specific temperature is taken into account by either increasing drastically the viscosity or by imposing a vanishing velocity by penalty method. The influence of flow rate and mould temperature are also analysed whereas it is shown that the surface tension can be neglected during injection stage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agassant J-F, Avenas P, Sergent J-P, Vergnes B, Vincent M (2014) Mise en forme des polymères : Approche thermomécanique de la plasturgie. Lavoisier 4ème Edition (in French) Agassant J-F, Avenas P, Sergent J-P, Vergnes B, Vincent M (2014) Mise en forme des polymères : Approche thermomécanique de la plasturgie. Lavoisier 4ème Edition (in French)
2.
go back to reference Angelov A, Coulter J (2004) Micromolding product manufacture-a progress report. In: Proceedings of the annual technical conference (ANTEC 2004). Chicago Angelov A, Coulter J (2004) Micromolding product manufacture-a progress report. In: Proceedings of the annual technical conference (ANTEC 2004). Chicago
3.
go back to reference Attia U M, Marson S, Alcock J R (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluid 7:1–28CrossRef Attia U M, Marson S, Alcock J R (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluid 7:1–28CrossRef
4.
go back to reference Coupez T (1994) A mesh improvement method for 3D automatic remeshing. In: Weatherill NP et al (eds) Numerical grid generation in computational fluid dynamics and related fields. Pineridge Press, pp 615–626 Coupez T (1994) A mesh improvement method for 3D automatic remeshing. In: Weatherill NP et al (eds) Numerical grid generation in computational fluid dynamics and related fields. Pineridge Press, pp 615–626
5.
go back to reference Coupez T (2011) Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing. J Comput Phys 230(7):2391–2405MathSciNetCrossRefMATH Coupez T (2011) Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing. J Comput Phys 230(7):2391–2405MathSciNetCrossRefMATH
6.
go back to reference Coupez T, Digonnet H, Hachem E, Laure P, Silva L, Valette R (2013) Multidomain finite element computations. In: Arbitrary Lagrangian-Eulerian and fluid–structure interaction. Wiley, pp 221–290 Coupez T, Digonnet H, Hachem E, Laure P, Silva L, Valette R (2013) Multidomain finite element computations. In: Arbitrary Lagrangian-Eulerian and fluid–structure interaction. Wiley, pp 221–290
7.
go back to reference Coupez T, Silva L, Hachem E (2015) Implicit boundary and adaptive anisotropic meshing. In: Perotto E, Formaggia S (eds), vol 5. Springer International Publishing, pp 1–18 Coupez T, Silva L, Hachem E (2015) Implicit boundary and adaptive anisotropic meshing. In: Perotto E, Formaggia S (eds), vol 5. Springer International Publishing, pp 1–18
9.
go back to reference El Otman R, Zinet M, Boutaous M, Benhadid H (2011) Numerical simulation and thermal analysis of the filling stage in the injection molding process: role of the mold-polymer interface. J Appl Polym Sci 121:1579–1592CrossRef El Otman R, Zinet M, Boutaous M, Benhadid H (2011) Numerical simulation and thermal analysis of the filling stage in the injection molding process: role of the mold-polymer interface. J Appl Polym Sci 121:1579–1592CrossRef
10.
go back to reference Francois G, Ville L, Silva L, Vincent M (2013) Multi criteria adaptive meshing for polymers processing in Rem3D®;. Key Eng Mater 554–557:1649–1657CrossRef Francois G, Ville L, Silva L, Vincent M (2013) Multi criteria adaptive meshing for polymers processing in Rem3D®;. Key Eng Mater 554–557:1649–1657CrossRef
11.
go back to reference Gruau C, Coupez T (2005) 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput Methods Appl Mech Engrg 194(48–49):4951–4976MathSciNetCrossRefMATH Gruau C, Coupez T (2005) 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput Methods Appl Mech Engrg 194(48–49):4951–4976MathSciNetCrossRefMATH
13.
go back to reference Giboz J, Copponnex T, Mélé P (2007) Micro-injection molding of thermoplastic polymers: a review. J Micromech Microeng 17: R96CrossRef Giboz J, Copponnex T, Mélé P (2007) Micro-injection molding of thermoplastic polymers: a review. J Micromech Microeng 17: R96CrossRef
14.
go back to reference Hill S, Kamper K, Dasbach U, Dopper J, Ehrfeld W, Kaupert M (1995) An investigation of computer modelling for microinjection moulding. In: Proceedings of microsym’95 Hill S, Kamper K, Dasbach U, Dopper J, Ehrfeld W, Kaupert M (1995) An investigation of computer modelling for microinjection moulding. In: Proceedings of microsym’95
15.
go back to reference Kukla C, Loib H, Detter H, Hannenheim W (1998) Micro-injection moulding-the aims of a project partnership. Kunsts Plast Eur 88(9):6–7 Kukla C, Loib H, Detter H, Hannenheim W (1998) Micro-injection moulding-the aims of a project partnership. Kunsts Plast Eur 88(9):6–7
16.
go back to reference Larochette M, Brulez A C, Vera J, Benayoun S (2015) Development of an instrumented mold for the replication of textured surfaces by injection molding: optimization of the replication quality. Polymer replication on nanoscale. In: 2nd International conference. Copenhagen Larochette M, Brulez A C, Vera J, Benayoun S (2015) Development of an instrumented mold for the replication of textured surfaces by injection molding: optimization of the replication quality. Polymer replication on nanoscale. In: 2nd International conference. Copenhagen
18.
go back to reference Piotter V, Hanemann T, Ruprecht R, Hausselt J (1997) Injection molding and related techniques for fabrication of microstructures. Microsyst Technol 3:129–133CrossRef Piotter V, Hanemann T, Ruprecht R, Hausselt J (1997) Injection molding and related techniques for fabrication of microstructures. Microsyst Technol 3:129–133CrossRef
19.
go back to reference Piotter V, Mueller K, Plewa K, Ruprecht R, Hausselt J (2002) Performance and simulation of thermoplastic micro injection molding. Microsyst Technol 8:387–390CrossRef Piotter V, Mueller K, Plewa K, Ruprecht R, Hausselt J (2002) Performance and simulation of thermoplastic micro injection molding. Microsyst Technol 8:387–390CrossRef
20.
go back to reference Ramière I (2008) Convergence analysis of the Q1-finite element method for elliptic problems with non-boundary fitted meshes. Int J Numer Methods Eng 75(9):1007–1052MathSciNetCrossRefMATH Ramière I (2008) Convergence analysis of the Q1-finite element method for elliptic problems with non-boundary fitted meshes. Int J Numer Methods Eng 75(9):1007–1052MathSciNetCrossRefMATH
21.
go back to reference Rytka C, Kristiansen P M, Neyer A (2015) Iso- and variothermal injection compression moulding of polymer micro- and nanostructures for optical and medical applications. J. Micromech Microeng 25:065008CrossRef Rytka C, Kristiansen P M, Neyer A (2015) Iso- and variothermal injection compression moulding of polymer micro- and nanostructures for optical and medical applications. J. Micromech Microeng 25:065008CrossRef
22.
go back to reference Rytka C, Lungershausen J, Kristiansen PM, Neyer A (2016) 3D filling simulation of micro- and nanostructures in comparison to iso- and variothermal injection moulding trials. J Micromech Microeng 26:065018CrossRef Rytka C, Lungershausen J, Kristiansen PM, Neyer A (2016) 3D filling simulation of micro- and nanostructures in comparison to iso- and variothermal injection moulding trials. J Micromech Microeng 26:065018CrossRef
24.
go back to reference Sha B, Dimov S, Griffiths C, Packianather M S (2007) Investigation of micro-injection moulding: factors affecting the replication quality. J Mater Process Technol 183:284–296CrossRef Sha B, Dimov S, Griffiths C, Packianather M S (2007) Investigation of micro-injection moulding: factors affecting the replication quality. J Mater Process Technol 183:284–296CrossRef
25.
go back to reference Su Y C, Shah J, Lin L (2004) Implementation and analysis of polymetric microstructure replication by micro injection moulding. Inst Phys Publ J Micromech Microeng 14:422 Su Y C, Shah J, Lin L (2004) Implementation and analysis of polymetric microstructure replication by micro injection moulding. Inst Phys Publ J Micromech Microeng 14:422
26.
go back to reference Sollogoub C, Felder E, Demay Y, Agassant J-F, Deparis P, Mikler N (2008) Thermomechanical analysis and modeling of the extrusion coating process. Polym Eng Sci 48:1634–1648. doi:10.1002/pen.21099 CrossRef Sollogoub C, Felder E, Demay Y, Agassant J-F, Deparis P, Mikler N (2008) Thermomechanical analysis and modeling of the extrusion coating process. Polym Eng Sci 48:1634–1648. doi:10.​1002/​pen.​21099 CrossRef
27.
go back to reference Shen Y, Yeh S, Chen S (2002) Three-dimensional non-newtonian computations of micro-injection molding with the finite element method international communications in heat and mass Transfer 29:643–652 Shen Y, Yeh S, Chen S (2002) Three-dimensional non-newtonian computations of micro-injection molding with the finite element method international communications in heat and mass Transfer 29:643–652
28.
go back to reference Shen Y-K, Chang C-Y, Shen Y-S, Hsu S-C, Wu M-W (2008) Analysis for microstructure of microlens arrays on micro-injection molding by numerical simulation. Int Commun Heat Mass Transfer 35:723–727CrossRef Shen Y-K, Chang C-Y, Shen Y-S, Hsu S-C, Wu M-W (2008) Analysis for microstructure of microlens arrays on micro-injection molding by numerical simulation. Int Commun Heat Mass Transfer 35:723–727CrossRef
29.
go back to reference Tolinski M (2005) Macro challenges in micromolding. Plast Eng 61(9):14–16 Tolinski M (2005) Macro challenges in micromolding. Plast Eng 61(9):14–16
30.
go back to reference Ville L, Silva L, Coupez T (2011) Convected level set method for the numerical simulation of fluid buckling. Int J Numer Methods Fluids 66(3):324–344CrossRefMATH Ville L, Silva L, Coupez T (2011) Convected level set method for the numerical simulation of fluid buckling. Int J Numer Methods Fluids 66(3):324–344CrossRefMATH
31.
go back to reference Vera J, Brulez A-C, Contraires E, Larochette M, Valette S, Benayoun S (2015) Influence of the polypropylene structure on the replication of nanostructures by injection molding. J Micromechan Microeng 25:115027CrossRef Vera J, Brulez A-C, Contraires E, Larochette M, Valette S, Benayoun S (2015) Influence of the polypropylene structure on the replication of nanostructures by injection molding. J Micromechan Microeng 25:115027CrossRef
32.
go back to reference Weber L, Ehrfeld W, Freimuth H, Lacher M, Lehr H, Pech B (1996) Micromolding: a powerful tool for large-scale production of precise microstructures. In: Proceedings of SPIE—the international society for optical engineering. Austin Weber L, Ehrfeld W, Freimuth H, Lacher M, Lehr H, Pech B (1996) Micromolding: a powerful tool for large-scale production of precise microstructures. In: Proceedings of SPIE—the international society for optical engineering. Austin
33.
go back to reference Weber L, Ehrfeld W (1998) Molding of microstructures for high-tech applications. In: Proceedings of the 56th annual technical conference (ANTEC 1998). Part 3 (of 3), Atlanta Weber L, Ehrfeld W (1998) Molding of microstructures for high-tech applications. In: Proceedings of the 56th annual technical conference (ANTEC 1998). Part 3 (of 3), Atlanta
34.
go back to reference Weber L, Ehrfeld W (1999) Micromoulding: market position and development potential. Kunststoffe 89 (10):192–202 Weber L, Ehrfeld W (1999) Micromoulding: market position and development potential. Kunststoffe 89 (10):192–202
35.
go back to reference Willams M L, Landel R F, Ferry D H (1955) Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Amer Chem Soc 77:3701–3706CrossRef Willams M L, Landel R F, Ferry D H (1955) Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Amer Chem Soc 77:3701–3706CrossRef
36.
go back to reference Wu P H, Cheng C W, Chang C P, Wu T M, Wang J K (2011) Fabrication of large-area hydrophobic surfaces with femtosecond-laser-structured molds. J Micromech Microeng 21(11):115032CrossRef Wu P H, Cheng C W, Chang C P, Wu T M, Wang J K (2011) Fabrication of large-area hydrophobic surfaces with femtosecond-laser-structured molds. J Micromech Microeng 21(11):115032CrossRef
37.
go back to reference Xie L, Jiang B, Shen L (2011) Modelling and simulation for micro injection molding process. INTECH Open Access Publisher Xie L, Jiang B, Shen L (2011) Modelling and simulation for micro injection molding process. INTECH Open Access Publisher
38.
go back to reference Yao D, Kim B (2002) Simulation of the filling process in micro channels for polymeric materials. J Micromech Microeng 12:604CrossRef Yao D, Kim B (2002) Simulation of the filling process in micro channels for polymeric materials. J Micromech Microeng 12:604CrossRef
39.
go back to reference Yang C, Yin X-H, Cheng G-M (2013) Microinjection molding of microsystem components: new aspects in improving performance. J Micromech Microeng 23:093001CrossRef Yang C, Yin X-H, Cheng G-M (2013) Microinjection molding of microsystem components: new aspects in improving performance. J Micromech Microeng 23:093001CrossRef
40.
go back to reference Yoshii M, Kuramoto H (1994) Experimental study of transcription of minute width grooves in injection moulding. Polym Eng Sci 34(15):1215CrossRef Yoshii M, Kuramoto H (1994) Experimental study of transcription of minute width grooves in injection moulding. Polym Eng Sci 34(15):1215CrossRef
41.
go back to reference Yu L, Koh C, Lee L, Koelling K, Madou M (2002) Experimental investigation and numerical simulation of injection molding with micro-features. Polym Eng Sci 42(5):871–888CrossRef Yu L, Koh C, Lee L, Koelling K, Madou M (2002) Experimental investigation and numerical simulation of injection molding with micro-features. Polym Eng Sci 42(5):871–888CrossRef
42.
go back to reference Yu L, Lee L, Koelling K (2004) Flow and heat transfer simulation of injection molding with microstructures. Polym Eng Sci 44(10):1866–1876CrossRef Yu L, Lee L, Koelling K (2004) Flow and heat transfer simulation of injection molding with microstructures. Polym Eng Sci 44(10):1866–1876CrossRef
43.
go back to reference Zhao J, Mayes R, Chen G, Chan PS, Xiong Z J (2003) Polymer micromould design and micromoulding process. Plast Rubber Compos 32(6):240–247CrossRef Zhao J, Mayes R, Chen G, Chan PS, Xiong Z J (2003) Polymer micromould design and micromoulding process. Plast Rubber Compos 32(6):240–247CrossRef
Metadata
Title
A multiphase Eulerian approach for modelling the polymer injection into a textured mould
Authors
Rebecca Nakhoul
Patrice Laure
Luisa Silva
Michel Vincent
Publication date
19-11-2016
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 1/2018
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-016-1328-1

Other articles of this Issue 1/2018

International Journal of Material Forming 1/2018 Go to the issue

Premium Partners