Skip to main content
Top

2018 | OriginalPaper | Chapter

A Multiscale Framework for Thermoplasticity

Authors : Marko Čanađija, Neven Munjas

Published in: Multiscale Modeling of Heterogeneous Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter describes a homogenization procedure for thermoplasticity problems. The proposed model is suitable for the finite strain regime and supports a very wide class of plasticity models. The methodology starts from the thermodynamically consistent thermoelastic framework already described in the literature. The latter framework is now extended to account for inelastic deformations. The problem is separated by means of the isothermal split into a mechanical and a thermal step, both at the macroscale and the microscale. As demonstrated in an example, the method does provide a way to successfully homogenize microscale variables as well as tangent operators. Finally, limitations of the approach are pointed out.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Canadija, M., Mosler, J.: A variational formulation for thermomechanically coupled low cycle fatigue at finite strains. Int. J. Solids Struct. 100, 388–398 (2016)CrossRef Canadija, M., Mosler, J.: A variational formulation for thermomechanically coupled low cycle fatigue at finite strains. Int. J. Solids Struct. 100, 388–398 (2016)CrossRef
2.
go back to reference Canadija, M., Brnic, J.: Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. Int. J. Plast. 20, 1851–1874 (2004)CrossRefMATH Canadija, M., Brnic, J.: Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. Int. J. Plast. 20, 1851–1874 (2004)CrossRefMATH
3.
go back to reference Simo, J., Miehe, C.: Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)CrossRefMATH Simo, J., Miehe, C.: Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)CrossRefMATH
4.
go back to reference Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 171(3), 387–418 (1999)MathSciNetCrossRefMATH Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 171(3), 387–418 (1999)MathSciNetCrossRefMATH
5.
go back to reference Celigoj, C.: Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle. Int. J. Numer. Methods Eng. 71(1), 102–126 (2007)MathSciNetCrossRefMATH Celigoj, C.: Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle. Int. J. Numer. Methods Eng. 71(1), 102–126 (2007)MathSciNetCrossRefMATH
6.
go back to reference Özdemir, I., Brekelmans, W., Geers, M.G.: FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods. Appl. Mech. Eng. 198(3), 602–613 (2008) Özdemir, I., Brekelmans, W., Geers, M.G.: FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods. Appl. Mech. Eng. 198(3), 602–613 (2008)
7.
go back to reference Sengupta, A., Papadopoulos, P., Taylor, R.L.: A multiscale finite element method for modeling fully coupled thermomechanical problems in solids. Int. J. Numer. Methods Eng. 91(13), 1386–1405 (2012) Sengupta, A., Papadopoulos, P., Taylor, R.L.: A multiscale finite element method for modeling fully coupled thermomechanical problems in solids. Int. J. Numer. Methods Eng. 91(13), 1386–1405 (2012)
9.
go back to reference Canadija, M., Mosler, J.: On the thermomechnaical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int. J. Solids Struct. 48(78), 1120–1129 (2011) Canadija, M., Mosler, J.: On the thermomechnaical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int. J. Solids Struct. 48(78), 1120–1129 (2011)
10.
go back to reference Mosler, J.: Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening. Comput. Methods Appl. Mech. Eng. 199, 2753–2764 (2010)MathSciNetCrossRefMATH Mosler, J.: Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening. Comput. Methods Appl. Mech. Eng. 199, 2753–2764 (2010)MathSciNetCrossRefMATH
11.
go back to reference Mosler, J., Bruhns, O.: Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split. Int. J. Solids Struct. 46, 1676–1685 (2009)MathSciNetCrossRefMATH Mosler, J., Bruhns, O.: Towards variational constitutive updates for non-associative plasticity models at finite strain: models based on a volumetric-deviatoric split. Int. J. Solids Struct. 46, 1676–1685 (2009)MathSciNetCrossRefMATH
12.
go back to reference Mosler, J., Bruhns, O.: On the implementation of rate-independent standard dissaptive solids at finite strain—variational constitutive updates. Comput. Methods Appl. Mech. Eng. 199, 417–429 (2010)CrossRefMATH Mosler, J., Bruhns, O.: On the implementation of rate-independent standard dissaptive solids at finite strain—variational constitutive updates. Comput. Methods Appl. Mech. Eng. 199, 417–429 (2010)CrossRefMATH
13.
go back to reference Bleier, N., Mosler, J.: Efficient variational constitutive updates by means of a novel parameterization of the flow rule. Int. J. Numer. Methods Eng. 89(9), 1120–1143 (2012)MathSciNetCrossRefMATH Bleier, N., Mosler, J.: Efficient variational constitutive updates by means of a novel parameterization of the flow rule. Int. J. Numer. Methods Eng. 89(9), 1120–1143 (2012)MathSciNetCrossRefMATH
14.
go back to reference Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (2000)MATH Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (2000)MATH
15.
go back to reference Yang, Q., Stainier, L., Ortiz, M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids. 54, 401–424 (2006)MathSciNetCrossRefMATH Yang, Q., Stainier, L., Ortiz, M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids. 54, 401–424 (2006)MathSciNetCrossRefMATH
16.
go back to reference Bartels, A., Bartel, T., Canadija, M., Mosler, J.: On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials. J. Mech. Phys. Solids 82, 218–234 (2015)MathSciNetCrossRef Bartels, A., Bartel, T., Canadija, M., Mosler, J.: On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials. J. Mech. Phys. Solids 82, 218–234 (2015)MathSciNetCrossRef
17.
go back to reference Temizer, I., Wriggers, P.: On a mass conservation criterion in micro-to-macro transitions. J. Appl. Mech. 75(5), 054503 (2008) Temizer, I., Wriggers, P.: On a mass conservation criterion in micro-to-macro transitions. J. Appl. Mech. 75(5), 054503 (2008)
18.
go back to reference Miehe, C.: Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput. Methods Appl. Mech. Eng. 134(3), 223–240 (1996)MathSciNetCrossRefMATH Miehe, C.: Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput. Methods Appl. Mech. Eng. 134(3), 223–240 (1996)MathSciNetCrossRefMATH
19.
go back to reference Simo, J., Hughes, T.: Computational Inelasticity. Springer, New York (1998)MATH Simo, J., Hughes, T.: Computational Inelasticity. Springer, New York (1998)MATH
Metadata
Title
A Multiscale Framework for Thermoplasticity
Authors
Marko Čanađija
Neven Munjas
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-65463-8_16

Premium Partners