Skip to main content
Top
Published in: International Journal of Social Robotics 3/2015

01-06-2015

A Neural Architecture for Performing Actual and Mentally Simulated Movements During Self-Intended and Observed Bimanual Arm Reaching Movements

Authors: Rodolphe J. Gentili, Hyuk Oh, Di-Wei Huang, Garrett E. Katz, Ross H. Miller, James A. Reggia

Published in: International Journal of Social Robotics | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dexterous reaching, pointing, and grasping play a critical role in human interactions with tools and the environment, and it also allows individuals to interact with one another effectively in social settings. Developing robotic systems with mental simulation and imitation learning abilities for such tasks seems a promising way to enhance robot performance as well as to enable interactions with humans in a social context. In spite of important advances in artificial intelligence and smart robotics, current robotic systems lack the flexibility and adaptability that humans so naturally exhibit. Here we present and study a neural architecture that captures some critical visuo-spatial transformations that are required for the cognitive processes of mental simulation and imitation. The results show that our neural model can perform accurate, flexible and robust 3D unimanual and bimanual actual/imagined reaching movements while avoiding extreme joint positions and generating kinematics similar to those observed with humans. In addition, using visuo-spatial transformations, the neural model was able to observe/imitate bimanual arm reaching movements independently of the viewpoint, distance and anthropometry between the demonstrator and imitator. Our model is a first step towards developing a more advanced neurally-inspired hierarchical architecture that integrates mental simulation and sensorimotor processing as it learns to imitate dexterous bimanual arm movements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Shadmehr R (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT, Cambridge Shadmehr R (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT, Cambridge
6.
go back to reference Nicolescu M, Mataric M (2009) Task learning through imitation and human–robot interaction. In: Dautenhahn K, Nehaniv C (eds) Models and mechanisms of imitation and social learning in robots, humans and animals. Cambridge University Press, Cambridge, pp 407–424 Nicolescu M, Mataric M (2009) Task learning through imitation and human–robot interaction. In: Dautenhahn K, Nehaniv C (eds) Models and mechanisms of imitation and social learning in robots, humans and animals. Cambridge University Press, Cambridge, pp 407–424
14.
go back to reference Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105(Pt 2):331–348CrossRef Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105(Pt 2):331–348CrossRef
15.
go back to reference Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703 Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703
16.
go back to reference Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J Neurophysiol 81(5):2140–2155 Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J Neurophysiol 81(5):2140–2155
17.
go back to reference Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99(1):97–111CrossRef Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99(1):97–111CrossRef
18.
go back to reference Gentili R, Han CE, Schweighofer N, Papaxanthis C (2010) Motor learning without doing: trial-by-trial improvement in motor performance during mental training. J Neurophysiol 104(2):774–783. doi:10.1152/jn.00257.2010 CrossRef Gentili R, Han CE, Schweighofer N, Papaxanthis C (2010) Motor learning without doing: trial-by-trial improvement in motor performance during mental training. J Neurophysiol 104(2):774–783. doi:10.​1152/​jn.​00257.​2010 CrossRef
19.
go back to reference Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9(8):1265–1279CrossRefMATH Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9(8):1265–1279CrossRefMATH
22.
go back to reference Guillot A, Di Rienzo F, Macintyre T, Moran A, Collet C (2012) Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front Hum Neurosci 6(247):2012. doi:10.3389/fnhum.2012.00247.eCollection Guillot A, Di Rienzo F, Macintyre T, Moran A, Collet C (2012) Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front Hum Neurosci 6(247):2012. doi:10.​3389/​fnhum.​2012.​00247.​eCollection
25.
go back to reference Decety J, Jeannerod M (1995) Mentally simulated movements in virtual reality: does Fitts’s law hold in motor imagery? Behav Brain Res 72(1–2):127–134CrossRef Decety J, Jeannerod M (1995) Mentally simulated movements in virtual reality: does Fitts’s law hold in motor imagery? Behav Brain Res 72(1–2):127–134CrossRef
26.
go back to reference Papaxanthis C, Pozzo T, Kasprinski R, Berthoz A (2003) Comparison of actual and imagined execution of whole-body movements after a long exposure to microgravity. Neurosci Lett 339(1):41–44CrossRef Papaxanthis C, Pozzo T, Kasprinski R, Berthoz A (2003) Comparison of actual and imagined execution of whole-body movements after a long exposure to microgravity. Neurosci Lett 339(1):41–44CrossRef
27.
go back to reference Papaxanthis C, Schieppati M, Gentili R, Pozzo T (2002) Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass. Exp Brain Res 143(4):447–452. doi:10.1007/s00221-002-1012-1 CrossRef Papaxanthis C, Schieppati M, Gentili R, Pozzo T (2002) Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass. Exp Brain Res 143(4):447–452. doi:10.​1007/​s00221-002-1012-1 CrossRef
29.
go back to reference Carr L, Iacoboni M, Dubeau M-C, Mazziotta JC, Lenzi GL (2003) Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc Natl Acad Sci USA 100(9):5497–5502. doi:10.1073/pnas.0935845100 CrossRef Carr L, Iacoboni M, Dubeau M-C, Mazziotta JC, Lenzi GL (2003) Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc Natl Acad Sci USA 100(9):5497–5502. doi:10.​1073/​pnas.​0935845100 CrossRef
30.
go back to reference Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC, Mazziotta JC, Rizzolatti, G. (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98(24):13995–13999. doi:10.1073/pnas.241474598 Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC, Mazziotta JC, Rizzolatti, G. (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98(24):13995–13999. doi:10.​1073/​pnas.​241474598
31.
go back to reference Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593–609CrossRef Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593–609CrossRef
32.
go back to reference Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2(9):661–670. doi:10.1038/35090060 CrossRef Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2(9):661–670. doi:10.​1038/​35090060 CrossRef
34.
go back to reference Diftler MA, Mehling JS, Abdallah ME, Radford NA, Bridgwater LB, Sanders AM, Askew RS, Linn DM, Yamokoski JD, Permenter FA, Hargrave BK, Platt R, Savely RT, Ambrose RO (2011) Robonaut 2—the first humanoid robot in space. In: IEEE international conference on robotics and automation, Shanghai, China, 9–13 May 2011, pp 2178–2183 Diftler MA, Mehling JS, Abdallah ME, Radford NA, Bridgwater LB, Sanders AM, Askew RS, Linn DM, Yamokoski JD, Permenter FA, Hargrave BK, Platt R, Savely RT, Ambrose RO (2011) Robonaut 2—the first humanoid robot in space. In: IEEE international conference on robotics and automation, Shanghai, China, 9–13 May 2011, pp 2178–2183
36.
go back to reference Ruini F, Apel JS, Morse AF, Cangelosi A, Ellis R, Goslin J, Fische MH (2012) Towards a Biologically-inspired Cognitive Architecture for Short-Term Memory in Humanoid Robots. In: Advances in autonomous robotics. Lecture Notes in Computer Science, vol 7429. Springer, Berlin, pp 453–454. doi:10.1007/978-3-642-32527-4_55 Ruini F, Apel JS, Morse AF, Cangelosi A, Ellis R, Goslin J, Fische MH (2012) Towards a Biologically-inspired Cognitive Architecture for Short-Term Memory in Humanoid Robots. In: Advances in autonomous robotics. Lecture Notes in Computer Science, vol 7429. Springer, Berlin, pp 453–454. doi:10.​1007/​978-3-642-32527-4_​55
37.
go back to reference Diamond A, Holland OE (2014) Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning. Bioinspir Biomim 9:016015. doi:10.1088/1748-3182/9/1/016015 Diamond A, Holland OE (2014) Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning. Bioinspir Biomim 9:016015. doi:10.​1088/​1748-3182/​9/​1/​016015
39.
go back to reference Nehaniv CL, Ab HA, Dautenhahn K (1999) Of hummingbirds and helicopters: an algebraic framework for interdisciplinary studies of imitation and its applications. In: Demiris J, Birk A (eds) Interdisciplinary approaches to robot learning. World Scientific Press, Singapore, pp 136–161 Nehaniv CL, Ab HA, Dautenhahn K (1999) Of hummingbirds and helicopters: an algebraic framework for interdisciplinary studies of imitation and its applications. In: Demiris J, Birk A (eds) Interdisciplinary approaches to robot learning. World Scientific Press, Singapore, pp 136–161
40.
43.
go back to reference Jäkel R, Schmidt-Rohr SR, Rühl SW, Kasper A, Xue Z, Dillmann R (2012) Learning of planning models for dexterous manipulation based on human demonstrations. Int J Soc Robot 4(4):437–448. doi:10.1007/s12369-012-0162-y CrossRef Jäkel R, Schmidt-Rohr SR, Rühl SW, Kasper A, Xue Z, Dillmann R (2012) Learning of planning models for dexterous manipulation based on human demonstrations. Int J Soc Robot 4(4):437–448. doi:10.​1007/​s12369-012-0162-y CrossRef
44.
go back to reference Mellmann H, Cotugno G (2011) Dynamic motion control: adaptive bimanual grasping for a humanoid robot. Fundam Inf 112:89–101 Mellmann H, Cotugno G (2011) Dynamic motion control: adaptive bimanual grasping for a humanoid robot. Fundam Inf 112:89–101
45.
go back to reference Lee J, Chang P, Jamisola R (2013) Relative Impedance control for dual-arm robots performing asymmetric bimanual tasks. In: IEEE transactions on industrial electronics 1-1. doi:10.1109/TIE.2013.2266079 Lee J, Chang P, Jamisola R (2013) Relative Impedance control for dual-arm robots performing asymmetric bimanual tasks. In: IEEE transactions on industrial electronics 1-1. doi:10.​1109/​TIE.​2013.​2266079
47.
go back to reference Mohan V, Morasso P, Metta G, Sandini G (2009) A biomimetic, force-field based computational model for motion planning and bimanual coordination in humanoid robots. Auton Robots 27(3):291–307. doi:10.1007/s10514-009-9127-x CrossRef Mohan V, Morasso P, Metta G, Sandini G (2009) A biomimetic, force-field based computational model for motion planning and bimanual coordination in humanoid robots. Auton Robots 27(3):291–307. doi:10.​1007/​s10514-009-9127-x CrossRef
50.
go back to reference Demiris Y, Hayes G (2002) Imitation as a dual-route process featuring predictive and learning components: a biologically-plausible computational model. In: Dautenhahn K, Nehaniv C (eds) Imitation in animals and artifacts. MIT, Cambrige, pp 327–361 Demiris Y, Hayes G (2002) Imitation as a dual-route process featuring predictive and learning components: a biologically-plausible computational model. In: Dautenhahn K, Nehaniv C (eds) Imitation in animals and artifacts. MIT, Cambrige, pp 327–361
53.
go back to reference Toussaint M (2004) Learning a world model and planning with a self-organizing dynamic neural system. In: Thrun S, Saul LK, Schölkopf B (eds) Advances in neural information processing systems 16. MIT, Cambridge, pp 929–936 Toussaint M (2004) Learning a world model and planning with a self-organizing dynamic neural system. In: Thrun S, Saul LK, Schölkopf B (eds) Advances in neural information processing systems 16. MIT, Cambridge, pp 929–936
55.
go back to reference Guenther FH, Micci Barreca D (1997) Neural models for flexible control of redundant systems. In: Morasso PG, Sanguineti V (eds) Self-organization, computational maps, and motor control. Elsevier, North Holland, pp 383–421CrossRef Guenther FH, Micci Barreca D (1997) Neural models for flexible control of redundant systems. In: Morasso PG, Sanguineti V (eds) Self-organization, computational maps, and motor control. Elsevier, North Holland, pp 383–421CrossRef
56.
go back to reference Fiala JC (1995) Neural network models of motor timing and coordination. PhD dissertation, Cognitive & Neural Systems Department, Boston University, Boston Fiala JC (1995) Neural network models of motor timing and coordination. PhD dissertation, Cognitive & Neural Systems Department, Boston University, Boston
57.
go back to reference Gentili RJ, Papaxanthis C, Ebadzadeh M, Eskiizmirliler S, Ouanezar S, Darlot C (2009) Integration of gravitational torques in cerebellar pathways allows for the dynamic inverse computation of vertical pointing movements of a robot arm. PLoS One 4(4):e5176. doi:10.1371/journal.pone.0005176 CrossRef Gentili RJ, Papaxanthis C, Ebadzadeh M, Eskiizmirliler S, Ouanezar S, Darlot C (2009) Integration of gravitational torques in cerebellar pathways allows for the dynamic inverse computation of vertical pointing movements of a robot arm. PLoS One 4(4):e5176. doi:10.​1371/​journal.​pone.​0005176 CrossRef
58.
go back to reference Bonaiuto J, Arbib MA (2010) Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons. Biol Cybern 102:341–359MathSciNetCrossRefMATH Bonaiuto J, Arbib MA (2010) Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons. Biol Cybern 102:341–359MathSciNetCrossRefMATH
59.
go back to reference Bonaiuto J, Rosta E, Arbib MA (2007) Extending the mirror neuron system model, I. Audible actions and invisible grasps. Biol Cybern 96:9–38MathSciNetCrossRefMATH Bonaiuto J, Rosta E, Arbib MA (2007) Extending the mirror neuron system model, I. Audible actions and invisible grasps. Biol Cybern 96:9–38MathSciNetCrossRefMATH
60.
go back to reference Billard A, Mataric MJ (2001) Learning human arm movements by imitation: evaluation of a biologically inspired connectionist architecture. Robot Auton Syst 37:145–160CrossRefMATH Billard A, Mataric MJ (2001) Learning human arm movements by imitation: evaluation of a biologically inspired connectionist architecture. Robot Auton Syst 37:145–160CrossRefMATH
61.
go back to reference Demiris Y, Johnson M (2003) Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning. Connect Sci 15(4):231–243CrossRef Demiris Y, Johnson M (2003) Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning. Connect Sci 15(4):231–243CrossRef
62.
go back to reference Lopes M, Santos-Victor J (2005) Visual learning by imitation with motor representations. IEEE Trans Syst Man Cybern B 35(3):438–449CrossRef Lopes M, Santos-Victor J (2005) Visual learning by imitation with motor representations. IEEE Trans Syst Man Cybern B 35(3):438–449CrossRef
65.
go back to reference Nehaniv CL, Dautenhahn K (2002) The correspondence problem. Imitation in animals and artifacts. MIT, Cambridge, pp 41–61 Nehaniv CL, Dautenhahn K (2002) The correspondence problem. Imitation in animals and artifacts. MIT, Cambridge, pp 41–61
66.
67.
go back to reference Chrisley RL (1990) Cognitive map construction and use: a parallel distributed processing approach. In: Touretzky D, Hinton G, Sejnowski T (eds) The proceedings of the 1990 connectionist models summer school. Morgan Kaufmann, San Mateo Chrisley RL (1990) Cognitive map construction and use: a parallel distributed processing approach. In: Touretzky D, Hinton G, Sejnowski T (eds) The proceedings of the 1990 connectionist models summer school. Morgan Kaufmann, San Mateo
68.
go back to reference Tani J (1996) Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Trans Syst Man Cybern B 26(3):421–436. doi:1083-4419(96)03240-2 Tani J (1996) Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Trans Syst Man Cybern B 26(3):421–436. doi:1083-4419(96)03240-2
70.
go back to reference Ziemke T, Jirenhed DA, Hesslow G (2005) Internal simulation of perception: a minimal neuro-robotic model. Neurocomputing 68:85–104CrossRef Ziemke T, Jirenhed DA, Hesslow G (2005) Internal simulation of perception: a minimal neuro-robotic model. Neurocomputing 68:85–104CrossRef
71.
go back to reference Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56(5):507–540CrossRef Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56(5):507–540CrossRef
73.
go back to reference Wolpert DM, Goodbody SJ, Husain M (1998) Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1(6):529–533. doi:10.1038/2245 CrossRef Wolpert DM, Goodbody SJ, Husain M (1998) Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1(6):529–533. doi:10.​1038/​2245 CrossRef
78.
go back to reference Oh H, Gentili RJ, Reggia JA, Contreras-Vidal JL (2011) Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 4183–4186. doi:10.1109/IEMBS.2011.6091038 Oh H, Gentili RJ, Reggia JA, Contreras-Vidal JL (2011) Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 4183–4186. doi:10.​1109/​IEMBS.​2011.​6091038
79.
go back to reference Oh H, Gentili RJ, Reggia JA, Contreras-Vidal JL (2012) Modeling of visuospatial perspectives processing and modulation of the fronto-parietal network activity during action imitation. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 2551–2554. doi:10.1109/EMBC.2012.6346484 Oh H, Gentili RJ, Reggia JA, Contreras-Vidal JL (2012) Modeling of visuospatial perspectives processing and modulation of the fronto-parietal network activity during action imitation. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 2551–2554. doi:10.​1109/​EMBC.​2012.​6346484
80.
go back to reference Marconi B, Genovesio A, Battaglia-Mayer A, Ferraina S, Squatrito S, Molinari M, ... Caminiti R (2001) Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb Cortex 11(6):513–527 Marconi B, Genovesio A, Battaglia-Mayer A, Ferraina S, Squatrito S, Molinari M, ... Caminiti R (2001) Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb Cortex 11(6):513–527
81.
go back to reference Gharbawie OA, Stepniewska I, Kaas JH (2011) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 21(9):1981–2002. doi:10.1093/cercor/bhq260 CrossRef Gharbawie OA, Stepniewska I, Kaas JH (2011) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 21(9):1981–2002. doi:10.​1093/​cercor/​bhq260 CrossRef
82.
go back to reference Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419CrossRef Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419CrossRef
85.
go back to reference Baillieul J, Hollerbach, Brockett RW (1984) Programming and control of kinematically redundant manipulators. In: IEEE conference on decision and control, December 1984, pp 768–774. doi:10.1109/CDC.1984.272110 Baillieul J, Hollerbach, Brockett RW (1984) Programming and control of kinematically redundant manipulators. In: IEEE conference on decision and control, December 1984, pp 768–774. doi:10.​1109/​CDC.​1984.​272110
87.
go back to reference Poggio T, Girosi F (1989) A theory of networks for approximation and learning. AI Memo No. 1140. MIT, Cambridge Poggio T, Girosi F (1989) A theory of networks for approximation and learning. AI Memo No. 1140. MIT, Cambridge
88.
go back to reference Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York
89.
go back to reference Morrey BF, Chao EY (1976) Passive motion of the elbow joint. J Bone Jt Surg Am 58:501–508 Morrey BF, Chao EY (1976) Passive motion of the elbow joint. J Bone Jt Surg Am 58:501–508
91.
go back to reference Collet C, Guillot A (2010) Autonomic nervous system activities during imagined movements. In: Guillot A, Collet C (eds) The neurophysiological foundations of mental and motor imagery. Oxford University Press, New York, pp 95–108CrossRef Collet C, Guillot A (2010) Autonomic nervous system activities during imagined movements. In: Guillot A, Collet C (eds) The neurophysiological foundations of mental and motor imagery. Oxford University Press, New York, pp 95–108CrossRef
92.
go back to reference Contreras-Vidal JL, Stelmach GE (1995) A neural model of basal ganglia-thalamocortieal relations in normal and parkinsonian movement. Biol Cybern 73:467–476CrossRefMATH Contreras-Vidal JL, Stelmach GE (1995) A neural model of basal ganglia-thalamocortieal relations in normal and parkinsonian movement. Biol Cybern 73:467–476CrossRefMATH
93.
go back to reference Frak V, Cohen H, Pourcher E (2004) A dissociation between real and simulated movements in Parkinson’s disease. Neuroreport 15:1489–1492CrossRef Frak V, Cohen H, Pourcher E (2004) A dissociation between real and simulated movements in Parkinson’s disease. Neuroreport 15:1489–1492CrossRef
94.
go back to reference Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, Jackson PL (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37:930–949CrossRef Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, Jackson PL (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37:930–949CrossRef
95.
96.
97.
go back to reference Lau HC, Rogers RD, Haggard P, Passingham RE (2004) Attention to Intention. Science 20:303(5661): 1208–1210 Lau HC, Rogers RD, Haggard P, Passingham RE (2004) Attention to Intention. Science 20:303(5661): 1208–1210
99.
100.
go back to reference Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11:491–501CrossRef Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, Birbaumer N, Grodd W (1999) Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11:491–501CrossRef
101.
go back to reference Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27:11860–11864CrossRef Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27:11860–11864CrossRef
102.
go back to reference Bonnet M, Decety J, Jeannerod M, Requin J (1997) Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Brain Res Cogn Brain Res 5:221–228CrossRef Bonnet M, Decety J, Jeannerod M, Requin J (1997) Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Brain Res Cogn Brain Res 5:221–228CrossRef
104.
go back to reference Visalberghi E, Limongelli L (1996) Action and understanding: tool use revisited through the mind of capuchin monkeys. In: Russon A, Bard K, Parker S (eds) Reaching into thought. The minds of the great apes. Cambridge University Press, Cambridge, pp 57–79 Visalberghi E, Limongelli L (1996) Action and understanding: tool use revisited through the mind of capuchin monkeys. In: Russon A, Bard K, Parker S (eds) Reaching into thought. The minds of the great apes. Cambridge University Press, Cambridge, pp 57–79
105.
go back to reference Gentili RJ, Oh H, Molina J, Reggia JA, Contreras-Vidal JL (2012) Cortex inspired model for inverse kinematics computation for a humanoid robotic finger. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 3052–3055. doi:10.1109/EMBC.2012.6346608 Gentili RJ, Oh H, Molina J, Reggia JA, Contreras-Vidal JL (2012) Cortex inspired model for inverse kinematics computation for a humanoid robotic finger. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 3052–3055. doi:10.​1109/​EMBC.​2012.​6346608
106.
107.
go back to reference Nishimoto R, Tani J (2009) Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study. Psychol Res 73:545–558. doi:10.1007/s00426-009-0236-0 Nishimoto R, Tani J (2009) Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study. Psychol Res 73:545–558. doi:10.​1007/​s00426-009-0236-0
108.
go back to reference deJong R, Coles MG, Logan GD, Gratton G (1990) In search of the point of no return: the control of response processes. J Exp Psychol Hum Percept Perform 16:164–182CrossRef deJong R, Coles MG, Logan GD, Gratton G (1990) In search of the point of no return: the control of response processes. J Exp Psychol Hum Percept Perform 16:164–182CrossRef
110.
go back to reference Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–202CrossRef Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–202CrossRef
111.
go back to reference Guillot A, Lebon F, Rouffet D, Champely S, Doyon J, Collet C (2007) Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol 66:18–27CrossRef Guillot A, Lebon F, Rouffet D, Champely S, Doyon J, Collet C (2007) Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol 66:18–27CrossRef
112.
go back to reference Slade JM, Landers DM, Martin PE (2002) Muscular activity during real and imagined movements: a test of inflow explanations. J Sport Exerc Psychol 24:151–167 Slade JM, Landers DM, Martin PE (2002) Muscular activity during real and imagined movements: a test of inflow explanations. J Sport Exerc Psychol 24:151–167
113.
go back to reference Lebon F, Rouffet D, Collet C, Guillot A (2008) Modulation of EMG power spectrum frequency during motor imagery. Neurosci Lett 435:181–185CrossRef Lebon F, Rouffet D, Collet C, Guillot A (2008) Modulation of EMG power spectrum frequency during motor imagery. Neurosci Lett 435:181–185CrossRef
116.
go back to reference Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 10(1):86–94CrossRef Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 10(1):86–94CrossRef
Metadata
Title
A Neural Architecture for Performing Actual and Mentally Simulated Movements During Self-Intended and Observed Bimanual Arm Reaching Movements
Authors
Rodolphe J. Gentili
Hyuk Oh
Di-Wei Huang
Garrett E. Katz
Ross H. Miller
James A. Reggia
Publication date
01-06-2015
Publisher
Springer Netherlands
Published in
International Journal of Social Robotics / Issue 3/2015
Print ISSN: 1875-4791
Electronic ISSN: 1875-4805
DOI
https://doi.org/10.1007/s12369-014-0276-5

Other articles of this Issue 3/2015

International Journal of Social Robotics 3/2015 Go to the issue

Premium Partners