Skip to main content
Top

2024 | OriginalPaper | Chapter

A New Absolute Irreducibility Criterion for Multivariate Polynomials over Finite Fields

Authors : Carlos Agrinsoni, Heeralal Janwa, Moises Delgado

Published in: Combinatorics, Graph Theory and Computing

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the key problems in algebraic geometry and its applications in coding theory, cryptography, and other disciplines is to determine whether a variety defined by a set of polynomials is absolutely irreducible; i.e., it remains irreducible in the algebraic closure of the defining field. The famous Eisenstein criterion for irreducibility works only over the defining fields. One important place where this is needed is when one applies the Riemann-Roch theorem. Another important application is in bounding the number of rational points or exponential sums through the Weil conjectures. In this chapter, we consider the hypersurfaces defined by generalized trinomials. We present a new absolute irreducibility criterion for generalized trinomials over finite fields. Our criterion does not require testing for irreducibility in the ground field or in any extension field. We just require multivariate GCD computations and the square-free property. Since almost all polynomials are known to be square-free, our absolute irreducibility criterion proves the absolute irreducibility of almost all generalized trinomials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. M. Adleman. The function field sieve. In Algorithmic number theory (Ithaca, NY, 1994), volume 877 of Lecture Notes in Comput. Sci., pages 108–121. Springer, Berlin, 1994. L. M. Adleman. The function field sieve. In Algorithmic number theory (Ithaca, NY, 1994), volume 877 of Lecture Notes in Comput. Sci., pages 108–121. Springer, Berlin, 1994.
2.
go back to reference C. Agrinsoni, H. Janwa, and M. Delgado. New absolute irreducibility testing criteria and factorization of multivariate polynomials. In F. Hoffman, S. Holliday, Z. Rosen, F. Shahrokhi, and J. Wierman (eds.) Combinatorics, graph theory and computing, pages 403–412. Springer International Publishing, Cham, 2024. C. Agrinsoni, H. Janwa, and M. Delgado. New absolute irreducibility testing criteria and factorization of multivariate polynomials. In F. Hoffman, S. Holliday, Z. Rosen, F. Shahrokhi, and J. Wierman (eds.) Combinatorics, graph theory and computing, pages 403–412. Springer International Publishing, Cham, 2024.
3.
go back to reference Y. Aubry, G. McGuire, and F. Rodier. A few more functions that are not APN infinitely often. In Finite fields: theory and applications, volume 518 of Contemp. Math., pages 23–31. Amer. Math. Soc., Providence, RI, 2010. Y. Aubry, G. McGuire, and F. Rodier. A few more functions that are not APN infinitely often. In Finite fields: theory and applications, volume 518 of Contemp. Math., pages 23–31. Amer. Math. Soc., Providence, RI, 2010.
4.
go back to reference Y. Aubry and M. Perret. A Weil theorem for singular curves. In Arithmetic, geometry and coding theory (Luminy, 1993), pages 1–7. de Gruyter, Berlin, 1996. Y. Aubry and M. Perret. A Weil theorem for singular curves. In Arithmetic, geometry and coding theory (Luminy, 1993), pages 1–7. de Gruyter, Berlin, 1996.
5.
go back to reference D. Bartoli and M. Montanucci. Towards the full classification of exceptional scattered polynomials. arXiv preprint arXiv:1905.11390, 2019. D. Bartoli and M. Montanucci. Towards the full classification of exceptional scattered polynomials. arXiv preprint arXiv:1905.11390, 2019.
6.
go back to reference D. Bartoli and K.-U. Schmidt. Low-degree planar polynomials over finite fields of characteristic two. Journal of Algebra, 535:541–555, 2019.MathSciNetCrossRef D. Bartoli and K.-U. Schmidt. Low-degree planar polynomials over finite fields of characteristic two. Journal of Algebra, 535:541–555, 2019.MathSciNetCrossRef
7.
go back to reference P. Beelen and R. Pellikaan. The newton polygon of plane curves with many rational points. Designs, Codes and Cryptography, 21(1/3):41–67, 2000.MathSciNetCrossRef P. Beelen and R. Pellikaan. The newton polygon of plane curves with many rational points. Designs, Codes and Cryptography, 21(1/3):41–67, 2000.MathSciNetCrossRef
10.
go back to reference J. W. S. Cassels. Local fields, volume 3 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1986.CrossRef J. W. S. Cassels. Local fields, volume 3 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1986.CrossRef
11.
go back to reference P. Deligne. La conjecture de Weil. i. Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 43(1):273–307, 1974. P. Deligne. La conjecture de Weil. i. Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 43(1):273–307, 1974.
12.
go back to reference G. Dumas. Sur quelques cas d’irréductibilité des polynômes à coefficients rationnels. Journal de Mathématiques Pures et Appliquées, 2:191–258, 1906. G. Dumas. Sur quelques cas d’irréductibilité des polynômes à coefficients rationnels. Journal de Mathématiques Pures et Appliquées, 2:191–258, 1906.
13.
go back to reference G. Eisenstein. Über die Irreductibilität und einige andere Eigenschaften der Gleichung, von welcher die Theilung der ganzen Lemniscate abhängt. J. Reine Angew. Math., 39:160–179, 1850.MathSciNet G. Eisenstein. Über die Irreductibilität und einige andere Eigenschaften der Gleichung, von welcher die Theilung der ganzen Lemniscate abhängt. J. Reine Angew. Math., 39:160–179, 1850.MathSciNet
14.
15.
go back to reference S. Gao. Factoring multivariate polynomials via partial differential equations. Math. Comp., 72(242):801–822, 2003.MathSciNetCrossRef S. Gao. Factoring multivariate polynomials via partial differential equations. Math. Comp., 72(242):801–822, 2003.MathSciNetCrossRef
16.
go back to reference S. Gao and A. Lauder. Hensel lifting and bivariate polynomial factorisation over finite fields. Mathematics of Computation, 71(240):1663–1676, 2002.MathSciNetCrossRef S. Gao and A. Lauder. Hensel lifting and bivariate polynomial factorisation over finite fields. Mathematics of Computation, 71(240):1663–1676, 2002.MathSciNetCrossRef
17.
go back to reference J. Heintz and M. Sieveking. Absolute primality of polynomials is decidable in random polynomial time in the number of variables. In Automata, languages and programming (Akko, 1981), volume 115 of Lecture Notes in Comput. Sci., pages 16–28. Springer, Berlin-New York, 1981. J. Heintz and M. Sieveking. Absolute primality of polynomials is decidable in random polynomial time in the number of variables. In Automata, languages and programming (Akko, 1981), volume 115 of Lecture Notes in Comput. Sci., pages 16–28. Springer, Berlin-New York, 1981.
18.
go back to reference F. Hernando and G. McGuire. Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. J. Algebra, 343:78–92, 2011.MathSciNetCrossRef F. Hernando and G. McGuire. Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. J. Algebra, 343:78–92, 2011.MathSciNetCrossRef
19.
go back to reference F. Hernando and G. McGuire. Proof of a conjecture of Segre and Bartocci on monomial hyperovals in projective planes. Des. Codes Cryptogr., 65(3):275–289, 2012.MathSciNetCrossRef F. Hernando and G. McGuire. Proof of a conjecture of Segre and Bartocci on monomial hyperovals in projective planes. Des. Codes Cryptogr., 65(3):275–289, 2012.MathSciNetCrossRef
20.
go back to reference J. W. P. Hirschfeld. Projective geometries over finite fields. The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. J. W. P. Hirschfeld. Projective geometries over finite fields. The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs.
21.
go back to reference T. Høholdt, J. H. Van Lint, and R. Pellikaan. Algebraic geometry codes. Handbook of coding theory, 1(Part 1):871–961, 1998. T. Høholdt, J. H. Van Lint, and R. Pellikaan. Algebraic geometry codes. Handbook of coding theory, 1(Part 1):871–961, 1998.
22.
go back to reference J. Hu and M. Monagan. A fast parallel sparse polynomial gcd algorithm. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 271–278, 2016. J. Hu and M. Monagan. A fast parallel sparse polynomial gcd algorithm. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 271–278, 2016.
23.
go back to reference H. Janwa, G. M. McGuire, and R. M. Wilson. Double-error-correcting cyclic codes and absolutely irreducible polynomials over \(\mathrm {GF}(2)\). J. Algebra, 178(2):665–676, 1995. H. Janwa, G. M. McGuire, and R. M. Wilson. Double-error-correcting cyclic codes and absolutely irreducible polynomials over \(\mathrm {GF}(2)\). J. Algebra, 178(2):665–676, 1995.
24.
go back to reference H. Janwa and R. M. Wilson. Hyperplane sections of Fermat varieties in \({\mathbf {P}}^3\) in \(\mathrm {char}.\,2\) and some applications to cyclic codes. In Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993), volume 673 of Lecture Notes in Comput. Sci., pages 180–194. Springer, Berlin, 1993. H. Janwa and R. M. Wilson. Hyperplane sections of Fermat varieties in \({\mathbf {P}}^3\) in \(\mathrm {char}.\,2\) and some applications to cyclic codes. In Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993), volume 673 of Lecture Notes in Comput. Sci., pages 180–194. Springer, Berlin, 1993.
25.
go back to reference D. Jedlicka. APN monomials over \(\mathrm {GF}(2^n)\) for infinitely many n. Finite Fields Appl., 13(4):1006–1028, 2007. D. Jedlicka. APN monomials over \(\mathrm {GF}(2^n)\) for infinitely many n. Finite Fields Appl., 13(4):1006–1028, 2007.
26.
go back to reference E. Kaltofen. A polynomial reduction from multivariate to bivariate integral polynomial factorization. In Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages 261–266, 1982. E. Kaltofen. A polynomial reduction from multivariate to bivariate integral polynomial factorization. In Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages 261–266, 1982.
27.
go back to reference E. Kaltofen. A polynomial-time reduction from bivariate to univariate integral polynomial factorization. In 23rd annual symposium on foundations of computer science (Chicago, Ill., 1982), pages 57–64. IEEE, New York, 1982. E. Kaltofen. A polynomial-time reduction from bivariate to univariate integral polynomial factorization. In 23rd annual symposium on foundations of computer science (Chicago, Ill., 1982), pages 57–64. IEEE, New York, 1982.
29.
go back to reference E. Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization. SIAM J. Comput., 14(2):469–489, 1985.MathSciNetCrossRef E. Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization. SIAM J. Comput., 14(2):469–489, 1985.MathSciNetCrossRef
30.
go back to reference S. K. Khanduja and J. Saha. On a generalization of Eisenstein’s irreducibility criterion. Mathematika, 44(1):37–41, 1997.MathSciNetCrossRef S. K. Khanduja and J. Saha. On a generalization of Eisenstein’s irreducibility criterion. Mathematika, 44(1):37–41, 1997.MathSciNetCrossRef
31.
go back to reference S. Kopparty and S. Yekhanin. Detecting rational points on hypersurfaces over finite fields. In Twenty-Third Annual IEEE Conference on Computational Complexity, pages 311–320. IEEE Computer Soc., Los Alamitos, CA, 2008. S. Kopparty and S. Yekhanin. Detecting rational points on hypersurfaces over finite fields. In Twenty-Third Annual IEEE Conference on Computational Complexity, pages 311–320. IEEE Computer Soc., Los Alamitos, CA, 2008.
32.
go back to reference A. K. Lenstra. Factoring multivariate polynomials over finite fields. J. Comput. System Sci., 30(2):235–248, 1985.MathSciNetCrossRef A. K. Lenstra. Factoring multivariate polynomials over finite fields. J. Comput. System Sci., 30(2):235–248, 1985.MathSciNetCrossRef
33.
go back to reference A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515–534, 1982.MathSciNetCrossRef A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515–534, 1982.MathSciNetCrossRef
34.
go back to reference R. Lidl and H. Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. With a foreword by P. M. Cohn. R. Lidl and H. Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. With a foreword by P. M. Cohn.
35.
go back to reference S. MacLane. The Schönemann-Eisenstein irreducibility criteria in terms of prime ideals. Trans. Amer. Math. Soc., 43(2):226–239, 1938.MathSciNet S. MacLane. The Schönemann-Eisenstein irreducibility criteria in terms of prime ideals. Trans. Amer. Math. Soc., 43(2):226–239, 1938.MathSciNet
36.
go back to reference T. Sasaki and M. Suzuki. Three new algorithms for multivariate polynomial gcd. Journal of symbolic computation, 13(4):395–411, 1992.MathSciNetCrossRef T. Sasaki and M. Suzuki. Three new algorithms for multivariate polynomial gcd. Journal of symbolic computation, 13(4):395–411, 1992.MathSciNetCrossRef
37.
go back to reference W. Schmidt. Equations over finite fields: an elementary approach. Kendrick Press, Heber City, UT, second edition, 2004. W. Schmidt. Equations over finite fields: an elementary approach. Kendrick Press, Heber City, UT, second edition, 2004.
38.
go back to reference S. A. Stepanov. Congruences with two unknowns. Izv. Akad. Nauk SSSR Ser. Mat., 36:683–711, 1972.MathSciNet S. A. Stepanov. Congruences with two unknowns. Izv. Akad. Nauk SSSR Ser. Mat., 36:683–711, 1972.MathSciNet
39.
go back to reference S. A. Stepanov. Rational points of algebraic curves over finite fields. In Current problems of analytic number theory (Proc. Summer School, Minsk, 1972) (Russian), pages 223–243, 272, 1974. S. A. Stepanov. Rational points of algebraic curves over finite fields. In Current problems of analytic number theory (Proc. Summer School, Minsk, 1972) (Russian), pages 223–243, 272, 1974.
40.
go back to reference H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer-Verlag, Berlin, 1993. H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer-Verlag, Berlin, 1993.
41.
go back to reference T. Szőnyi. Some applications of algebraic curves in finite geometry and combinatorics. In Surveys in combinatorics, 1997 (London), volume 241 of London Math. Soc. Lecture Note Ser., pages 197–236. Cambridge Univ. Press, Cambridge, 1997. T. Szőnyi. Some applications of algebraic curves in finite geometry and combinatorics. In Surveys in combinatorics, 1997 (London), volume 241 of London Math. Soc. Lecture Note Ser., pages 197–236. Cambridge Univ. Press, Cambridge, 1997.
42.
go back to reference J. von zur Gathen. Irreducibility of multivariate polynomials. J. Comput. System Sci., 31(2):225–264, 1985. Special issue: Twenty-fourth annual symposium on the foundations of computer science (Tucson, Ariz., 1983). J. von zur Gathen. Irreducibility of multivariate polynomials. J. Comput. System Sci., 31(2):225–264, 1985. Special issue: Twenty-fourth annual symposium on the foundations of computer science (Tucson, Ariz., 1983).
43.
go back to reference J. Von Zur Gathen and J. Gerhard. Modern computer algebra. Cambridge university press, 2013.CrossRef J. Von Zur Gathen and J. Gerhard. Modern computer algebra. Cambridge university press, 2013.CrossRef
44.
go back to reference D. Q. Wan. Minimal polynomials and distinctness of Kloosterman sums. Finite Fields Appl., 1(2):189–203, 1995. Special issue dedicated to Leonard Carlitz. D. Q. Wan. Minimal polynomials and distinctness of Kloosterman sums. Finite Fields Appl., 1(2):189–203, 1995. Special issue dedicated to Leonard Carlitz.
Metadata
Title
A New Absolute Irreducibility Criterion for Multivariate Polynomials over Finite Fields
Authors
Carlos Agrinsoni
Heeralal Janwa
Moises Delgado
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-62166-6_5

Premium Partner