Skip to main content
Top
Published in:

09-01-2023

A New Approach for JPEG Steganalysis with a Cognitive Evolving Ensembler and Robust Feature Selection

Authors: Vasily Sachnev, Narasimhan Sundararajan, Sundaram Suresh

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we develop a new robust feature selection scheme and an evolving ensemble classifier for stego content classification in a steganalysis framework. Steganalysis vs. steganography is a classical competition between two opposing research areas. Steganography focuses on hiding data within any media source such that the modified content becomes statistically indistinguishable from the original non-modified media. On the other hand, steganalysis focuses on detecting modified media that contains hidden data. Steganalysis includes two major steps, viz., feature extraction and binary classification of the original vs. modified images. The proposed Robust Feature Selection Method along with a Cognitive Evolving Ensemble classifier (RFSM-CEE) uses a Robust Feature Selection Genetic Algorithm (RFSGA) for identifying the robust features. A new measure called Sample Hardness (H) is used to calculate the Classifier Cost and select those training samples with higher sample hardness to train a set of basic classifiers with the robust features. RFSGA uses a specially tailored classifier cost C as the fitness function, which indicates the importance of each basic classifier for further ensembling. The proposed Cognitive Evolving Ensemble classifier (CEE) uses a growing/deleting strategy along with a voting scheme coupled with an Adaptive Ensemble Genetic Algorithm to define the set of basic classifiers for efficient ensembling. CEE uses simple voting rules to make a decision about each sample. Detailed performance evaluation of RFSM-CEE has been carried out by conducting experiments using J-UNIWARD and heuristic Bose-Chaudhuri-Hocquenghem steganography. The data used in these experiments are from BOSSbase and BOWS2 databases, along with Cartesian calibration JPEG Rich Models features. Experimental results clearly indicate major improvements in detection compared to the JPEG steganalysis ensemble classifier proposed by Kodovsky. In this paper a Robust Feature Selection Method along with a Cognitive Evolving Ensemble classifier (RFSM-CEE) focusing on searching for robust features in steganalysis data is presented along with a more accurate classifier to build efficient steganalysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Fridrich J. Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes. Lect Notes Comput Sci. 2004;3200:67–81.CrossRef Fridrich J. Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes. Lect Notes Comput Sci. 2004;3200:67–81.CrossRef
3.
go back to reference Avcibus I, Kharrazi M, Memon ND, Sankur B. Image steganalysis with binary similarity measures. EURASIP J Adv Signal Process. 2005;17:2749–57.MATH Avcibus I, Kharrazi M, Memon ND, Sankur B. Image steganalysis with binary similarity measures. EURASIP J Adv Signal Process. 2005;17:2749–57.MATH
4.
go back to reference Westfeld A. High capacity despite better steganalysis (F5: A steganographic algorithm). Lect Notes Comput Sci. 2001;2137:289–302.CrossRefMATH Westfeld A. High capacity despite better steganalysis (F5: A steganographic algorithm). Lect Notes Comput Sci. 2001;2137:289–302.CrossRefMATH
5.
go back to reference Kodovsky J, Fridrich J, Dittman J, Craver S, Fridrich J. Calibration revisited. In: Proceeding of the 11th ACM Multimedia & Security Workshop, Princeton, NJ. 2009. pp. 63–74. Kodovsky J, Fridrich J, Dittman J, Craver S, Fridrich J. Calibration revisited. In: Proceeding of the 11th ACM Multimedia & Security Workshop, Princeton, NJ. 2009. pp. 63–74.
6.
go back to reference Fridrich J, Kodovsky J. Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur. 2012;7(3):868–82.CrossRef Fridrich J, Kodovsky J. Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur. 2012;7(3):868–82.CrossRef
7.
go back to reference Zhang R, Sachnev V, Botnan MB, Kim HJ, Heo J. An efficient embedder for BCH coding for steganography. IEEE Trans Inf Theory. 2012;58(12):7272–9.MathSciNetCrossRefMATH Zhang R, Sachnev V, Botnan MB, Kim HJ, Heo J. An efficient embedder for BCH coding for steganography. IEEE Trans Inf Theory. 2012;58(12):7272–9.MathSciNetCrossRefMATH
8.
go back to reference Schöfeld D, Winkler A. Reducing the complexity of syndrome coding for embedding. Lect Notes Comput Sci. 2008;4567:145–58.CrossRef Schöfeld D, Winkler A. Reducing the complexity of syndrome coding for embedding. Lect Notes Comput Sci. 2008;4567:145–58.CrossRef
9.
go back to reference Zhang R, Sachnev V, Kim HJ. Fast BCH syndrome coding for steganography. Lect Notes Comput Sci. 2009;5806:48–58.CrossRefMATH Zhang R, Sachnev V, Kim HJ. Fast BCH syndrome coding for steganography. Lect Notes Comput Sci. 2009;5806:48–58.CrossRefMATH
10.
go back to reference Sachnev V, Kim HJ, Zhang R. Less detectable JPEG steganography method based on heuristic optimization and BCH syndrome coding. In: Proceedings of ACM Workshop on Multimedia and Security. 2009. pp. 131–139. Sachnev V, Kim HJ, Zhang R. Less detectable JPEG steganography method based on heuristic optimization and BCH syndrome coding. In: Proceedings of ACM Workshop on Multimedia and Security. 2009. pp. 131–139.
11.
go back to reference Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganography using Syndrome-Trellis codes. IEEE Trans Inf Forensics Secur. 2011;6(3):920–35.CrossRef Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganography using Syndrome-Trellis codes. IEEE Trans Inf Forensics Secur. 2011;6(3):920–35.CrossRef
12.
go back to reference Chien RT. Cyclic decoding produce for the Bose-Chaudhuri-Hocquenghem codes. IEEE Trans Inf Theory. 1965;11:549–57. Chien RT. Cyclic decoding produce for the Bose-Chaudhuri-Hocquenghem codes. IEEE Trans Inf Theory. 1965;11:549–57.
13.
go back to reference Huang F, Huang J, Shi Y-Q. New channel selection rule for JPEG steganography. IEEE Trans Inf Forensics Secur. 2012;7(4):1181–91.CrossRef Huang F, Huang J, Shi Y-Q. New channel selection rule for JPEG steganography. IEEE Trans Inf Forensics Secur. 2012;7(4):1181–91.CrossRef
14.
go back to reference Guo L, Ni J, Shi YQ. Uniform embedding for efficient JPEG steganography. IEEE Trans Inf Forensics Secur. 2014;9(5):814–25.CrossRef Guo L, Ni J, Shi YQ. Uniform embedding for efficient JPEG steganography. IEEE Trans Inf Forensics Secur. 2014;9(5):814–25.CrossRef
15.
go back to reference Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain. EURASIP J Inf Secur. 2014;2014:1.CrossRef Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain. EURASIP J Inf Secur. 2014;2014:1.CrossRef
16.
go back to reference Denemark T, Fridrich J. Side-informed steganography with additive distortion. Proceedings of the IEEE International Workshop on Information Forensics and Security. pp. 16–19. Nov. 2015. Denemark T, Fridrich J. Side-informed steganography with additive distortion. Proceedings of the IEEE International Workshop on Information Forensics and Security. pp. 16–19. Nov. 2015.
17.
go back to reference Denemark T, Bas P, Fridrich J. Natural Steganography in JPEG Compressed Images. Proceedings of the IS&T, Electronic Imaging, Media Watermarking, Security, and Forensics 2018. Burlingame, CA; 2018. Denemark T, Bas P, Fridrich J. Natural Steganography in JPEG Compressed Images. Proceedings of the IS&T, Electronic Imaging, Media Watermarking, Security, and Forensics 2018. Burlingame, CA; 2018.
18.
go back to reference Wang Y, Zhang W, Li W, Yu N. Non-additive cost functions for JPEG steganography based on block boundary maintenance. IEEE Trans Inf Forensics Secur. 2021;16:1117–30.CrossRef Wang Y, Zhang W, Li W, Yu N. Non-additive cost functions for JPEG steganography based on block boundary maintenance. IEEE Trans Inf Forensics Secur. 2021;16:1117–30.CrossRef
19.
go back to reference Goljan M, Fridrich J, Holotyak T. New blind steganalysis and its implications. In: Proceedings of the SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII, vol. 6072. 2006. pp. 1–13. Goljan M, Fridrich J, Holotyak T. New blind steganalysis and its implications. In: Proceedings of the SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII, vol. 6072. 2006. pp. 1–13.
20.
go back to reference Kodovsky J, Fridrich J. Steganalysis of JPEG images using rich models. Proceedings of SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics XIV, San Francisco, CA January 23–25, 2012. Kodovsky J, Fridrich J. Steganalysis of JPEG images using rich models. Proceedings of  SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics XIV, San Francisco, CA January 23–25, 2012.
21.
go back to reference Kodovsky J, Fridrich J. Steganalysis in high dimensions: fusing classifiers built on random subspaces, Proceedings of SPIE, Electronic Imaging, Media, Watermarking, Security and Forensics XIII, San Francisco, CA, January 23-26, 2011. Kodovsky J, Fridrich J. Steganalysis in high dimensions: fusing classifiers built on random subspaces, Proceedings of SPIE, Electronic Imaging, Media, Watermarking, Security and Forensics XIII, San Francisco, CA, January 23-26, 2011.
22.
go back to reference Holub V, Fridrich J. Low complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans Inf Forensics Secur. 2015;10(2). Holub V, Fridrich J. Low complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans Inf Forensics Secur. 2015;10(2).
23.
go back to reference Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J. Selection-channel-aware rich model for steganalysis of digital images. In: Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS). Dec. 2014. pp. 48–53. Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J. Selection-channel-aware rich model for steganalysis of digital images. In: Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS). Dec. 2014. pp. 48–53.
24.
go back to reference Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media. IEEE Transactions on Information Security and Forensics. 2012;7(2):432–44.CrossRef Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media. IEEE Transactions on Information Security and Forensics. 2012;7(2):432–44.CrossRef
26.
go back to reference Kodovsky J, Fridrich J. Quantitative steganalysis using rich models. SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics XV, San Francisco, CA, February 3–7, 2013. Kodovsky J, Fridrich J. Quantitative steganalysis using rich models. SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics XV, San Francisco, CA, February 3–7, 2013.
27.
go back to reference Hu D, Zhou S, Shen Q, Zheng S, Zhao Z, Fan Y. Digital image steganalysis based on visual attention and deep reinforcement learning. IEEE Access. 2019;7(1):25924–35.CrossRef Hu D, Zhou S, Shen Q, Zheng S, Zhao Z, Fan Y. Digital image steganalysis based on visual attention and deep reinforcement learning. IEEE Access. 2019;7(1):25924–35.CrossRef
28.
go back to reference Ma Y, Luo X, Li X, Bao Z, Zhao Z, Zhang Y. Selection of rich model steganalysis features based on decision rough set a-positive region reduction. IEEE Trans Circuits Syst Video Technol. 2019;29(2):336–50.CrossRef Ma Y, Luo X, Li X, Bao Z, Zhao Z, Zhang Y. Selection of rich model steganalysis features based on decision rough set a-positive region reduction. IEEE Trans Circuits Syst Video Technol. 2019;29(2):336–50.CrossRef
29.
go back to reference Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2000;29:1189–232.MathSciNetMATH Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2000;29:1189–232.MathSciNetMATH
30.
go back to reference Yousfi Y, Dworetzky E, Fridrich J. Detector-informed batch steganography and pooled steganalysis. Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security. 2022. Yousfi Y, Dworetzky E, Fridrich J. Detector-informed batch steganography and pooled steganalysis. Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security. 2022.
31.
go back to reference Butora J, Bas P. Fighting the reverse JPEG compatibility attack: pick your side. Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security. 2022. Butora J, Bas P. Fighting the reverse JPEG compatibility attack: pick your side. Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security. 2022.
32.
go back to reference Qian Y, Dong J, Wang W, Tan T. Deep learning for steganalysis via convolutional neural networks. In: Procedings of the SPIE, vol. 9409. 2015. p. 94090. Qian Y, Dong J, Wang W, Tan T. Deep learning for steganalysis via convolutional neural networks. In: Procedings of the SPIE, vol. 9409. 2015. p. 94090.
33.
go back to reference Xu G, Wu H-Z, Shi Y-Q. Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett. 2016;23(5):708–12.CrossRef Xu G, Wu H-Z, Shi Y-Q. Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett. 2016;23(5):708–12.CrossRef
34.
go back to reference Ye J, Ni J, Yi Y. Deep learning hierarchical representations for image steganalysis. IEEE Trans Inf Forensics Secur. 2017;12(11):2545–57.CrossRef Ye J, Ni J, Yi Y. Deep learning hierarchical representations for image steganalysis. IEEE Trans Inf Forensics Secur. 2017;12(11):2545–57.CrossRef
35.
go back to reference Boroumand M, Chen M, Fridrich J. Deep residual network for steganalysis of digital images. IEEE Trans Inf Forensics Secur. 2019;14(5):1181–93.CrossRef Boroumand M, Chen M, Fridrich J. Deep residual network for steganalysis of digital images. IEEE Trans Inf Forensics Secur. 2019;14(5):1181–93.CrossRef
36.
go back to reference Yousfi Y, Butora J, Khvedchenya E, Fridrich JJ. ImageNet pre-trained CNNs for JPEG steganalysis. 2020 IEEE International Workshop on Information Forensics and Security (WIFS). 2020. pp. 1–6. Yousfi Y, Butora J, Khvedchenya E, Fridrich JJ. ImageNet pre-trained CNNs for JPEG steganalysis. 2020 IEEE International Workshop on Information Forensics and Security (WIFS). 2020. pp. 1–6.
37.
go back to reference Yousfi Y, Butora J, Fridrich J, Clément FT. Improving EfficientNet for JPEG steganalysis. Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security. 2021. pp. 149–157. Yousfi Y, Butora J, Fridrich J, Clément FT. Improving EfficientNet for JPEG steganalysis. Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security. 2021. pp. 149–157.
38.
go back to reference Cogranne R, Giboulot Q, Bas P. The ALASKA steganalysis challenge: a first step towards steganalysis. Proceedings of the ACM Workshop on Information Hiding and Multimedia Security. 2019. pp. 125–137. Cogranne R, Giboulot Q, Bas P. The ALASKA steganalysis challenge: a first step towards steganalysis. Proceedings of the ACM Workshop on Information Hiding and Multimedia Security. 2019. pp. 125–137.
39.
go back to reference Yedroudj M, Chaumont M, Comby F, Ahmed OA, Bas P. Pixels-off: data-augmentation complementary solution for deep-learning steganalysis. Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security. 2020. pp. 39-48. Yedroudj M, Chaumont M, Comby F, Ahmed OA, Bas P. Pixels-off: data-augmentation complementary solution for deep-learning steganalysis. Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security. 2020. pp. 39-48.
40.
go back to reference Butora J, Yousfi Y, Fridrich J. How to pretrain for steganalysis. Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security. 2021. pp. 143–148. Butora J, Yousfi Y, Fridrich J. How to pretrain for steganalysis. Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security. 2021. pp. 143–148.
41.
go back to reference You W, Zhang H, Zhao X. A siamese CNN for image steganalysis. IEEE Trans Inf Forensics Secur. 2021;16(1):291–306.CrossRef You W, Zhang H, Zhao X. A siamese CNN for image steganalysis. IEEE Trans Inf Forensics Secur. 2021;16(1):291–306.CrossRef
42.
go back to reference Yousfi Y, Fridrich J. An intriguing struggle of CNNs in JPEG steganalysis and the OneHot solution. IEEE Signal Process Lett. 2020;27:830–4.CrossRef Yousfi Y, Fridrich J. An intriguing struggle of CNNs in JPEG steganalysis and the OneHot solution. IEEE Signal Process Lett. 2020;27:830–4.CrossRef
43.
go back to reference Sachnev V, Ramasamy S, Sundaram S, Kim HJ, Hwang HJ. A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn Comput. 2015;7(1):103–10.CrossRef Sachnev V, Ramasamy S, Sundaram S, Kim HJ, Hwang HJ. A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn Comput. 2015;7(1):103–10.CrossRef
44.
go back to reference Huang G-B. Learning capability and storage capacity of two-hidden layer feeforward networks. IEEE Trans Neural Netw. 2003;14(2):274–81.CrossRef Huang G-B. Learning capability and storage capacity of two-hidden layer feeforward networks. IEEE Trans Neural Netw. 2003;14(2):274–81.CrossRef
45.
go back to reference Bass P, Filler T, Pevny T. Break Our Steganographic System - the ins and outs of organizing BOSS. In: Proceedings of 13th Information Hiding Conference, Prague, 2011.  Bass P, Filler T, Pevny T. Break Our Steganographic System - the ins and outs of organizing BOSS. In: Proceedings of 13th Information Hiding Conference, Prague, 2011.
47.
go back to reference Holland IH. Adaptation in natural and artificial systems. University of Michigan: Press. Ann Arbor; 1975. Holland IH. Adaptation in natural and artificial systems. University of Michigan: Press. Ann Arbor; 1975.
48.
go back to reference Goldberg DE. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New York; 1989. p 41. Goldberg DE. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New York; 1989. p 41.
49.
go back to reference Suresh S, Omkar SN, Mani V, Guru Prakash TN. Lift coefficient prediction at high angle of attack using recurrent neural network. Aerosp Sci Technol. 2003;7(8):595-602. Suresh S, Omkar SN, Mani V, Guru Prakash TN. Lift coefficient prediction at high angle of attack using recurrent neural network. Aerosp Sci Technol. 2003;7(8):595-602.
Metadata
Title
A New Approach for JPEG Steganalysis with a Cognitive Evolving Ensembler and Robust Feature Selection
Authors
Vasily Sachnev
Narasimhan Sundararajan
Sundaram Suresh
Publication date
09-01-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10087-3

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner