To prove (
3.3) we require a slightly different approach to that of [
22, Theorem 2.32]. In particular, as
\(\pi _{F}^{0, k}\) is not a polynomial projector [
22, Equation (2.78)] does not hold in our case. However, the remainder of the proof is the same so we only have to show that
$$\begin{aligned} \sup _{g\in L^{2}(\Omega ):\Vert g\Vert _{\Omega }\le 1}|\mathcal {E}_h(u; \underline{I}_{h}^{k}z_g)| \lesssim h^{k+2}|u|_{H^{k+2}(\mathcal {T}_{h})}, \end{aligned}$$
(3.4)
where
\(z_g\) is the solution to the dual problem
$$\begin{aligned} {\textrm{a}}(v, z_g) = (g, v)_{\Omega } \qquad \forall v\in H^{1}_0(\Omega ). \end{aligned}$$
As we have assumed
\(\Omega \) to be convex, the following elliptic regularity holds:
$$\begin{aligned} \Vert z_g\Vert _{H^{2}(\Omega )} \lesssim \Vert g\Vert _{\Omega }. \end{aligned}$$
(3.5)
Moreover, as
\({\textbf {K}}={\textbf {I}}\), the following equality established in the proof of [
22, Lemma 2.18] holds true:
$$\begin{aligned} \mathcal {E}_h(u; \underline{I}_{h}^{k}z_g) = \sum _{T\in \mathcal {T}_{h}} \Big ((\nabla (u - \pi _{{\textbf {K}}, T}^{1, k+1}u) \cdot {\varvec{n}}_{{T}}, \pi _{\mathcal {F}_{T}}^{0, k} z_g - \pi _{T}^{0, k} z_g)_{\partial T} - {\textrm{s}}_{{\textbf {K}},T}(\underline{I}_{{T}}^{k}u, \underline{I}_{{T}}^{k}z_g)\Big )_{}. \end{aligned}$$
(3.6)
The sum over the boundary term in (
3.6) can be written as follows,
$$\begin{aligned}{} & {} \sum _{T\in \mathcal {T}_{h}} (\nabla (u - \pi _{{\textbf {K}}, T}^{1, k+1}u) \cdot {\varvec{n}}_{{T}}, \pi _{\mathcal {F}_{T}}^{0, k} z_g)_{\partial T} \\{} & {} \quad = \sum _{T\in \mathcal {T}_{h}}\sum _{F\in {\mathcal {F}_{T}}}(\nabla u \cdot {\varvec{n}}_{{T}{F}}, \pi _{F}^{0, k} z_g)_{F} + \sum _{T\in \mathcal {T}_{h}}\sum _{F\in {\mathcal {F}_{T}}}(\nabla \pi _{{\textbf {K}}, T}^{1, k+1}u \cdot {\varvec{n}}_{{T}{F}}, \pi _{F}^{0, k} z_g)_{F}. \end{aligned}$$
As
\(\nabla \pi _{{\textbf {K}}, T}^{1, k+1}u \cdot {\varvec{n}}_{{T}{F}}\in \mathcal {P}^{k}(F)\) we may drop the projector
\(\pi _{F}^{0, k}\) to write
$$\begin{aligned} \sum _{T\in \mathcal {T}_{h}}\sum _{F\in {\mathcal {F}_{T}}}(\nabla \pi _{{\textbf {K}}, T}^{1, k+1}u \cdot {\varvec{n}}_{{T}{F}}, \pi _{F}^{0, k} z_g)_{F} = \sum _{T\in \mathcal {T}_{h}}\sum _{F\in {\mathcal {F}_{T}}}(\nabla \pi _{{\textbf {K}}, T}^{1, k+1}u \cdot {\varvec{n}}_{{T}{F}}, z_g)_{F} \end{aligned}$$
As
\(\nabla u \in \varvec{H}({{\,\textrm{div}\,}};\Omega )\), the fluxes of
u are continuous across every internal face
\(F\in \mathcal {F}_{h}^{{\textrm{i}}}\). Therefore, as
\(\pi _{F}^{0, k} z_g = 0\) for all
\(F\in \mathcal {F}_{h}^{{\textrm{b}}}\) (due to
\(z_g = 0\) on
\(\partial \Omega \)), it holds that
$$\begin{aligned} \sum _{T\in \mathcal {T}_{h}}\sum _{F\in {\mathcal {F}_{T}}}(\nabla u \cdot {\varvec{n}}_{{T}{F}}, \pi _{F}^{0, k} z_g)_{F} = 0 = \sum _{T\in \mathcal {T}_{h}}\sum _{F\in {\mathcal {F}_{T}}}(\nabla u \cdot {\varvec{n}}_{{T}{F}}, z_g)_{F}. \end{aligned}$$
Substituting back into (
3.6) yields
$$\begin{aligned} \mathcal {E}_h(u; \underline{I}_{h}^{k}z_g) = \sum _{T\in \mathcal {T}_{h}} \Big ((\nabla (u - \pi _{{\textbf {K}}, T}^{1, k+1}u) \cdot {\varvec{n}}_{{T}}, z_g - \pi _{T}^{0, k} z_g)_{\partial T} - {\textrm{s}}_{{\textbf {K}},T}(\underline{I}_{{T}}^{k}u, \underline{I}_{{T}}^{k}z_g)\Big )_{}. \end{aligned}$$
It follows from a Cauchy–Schwarz inequality and the consistency (
2.14) that
$$\begin{aligned} {\textrm{s}}_{{\textbf {K}},T}(\underline{I}_{{T}}^{k}u, \underline{I}_{{T}}^{k}z_g){} & {} {\le } {\textrm{s}}_{{\textbf {K}},T}(\underline{I}_{{T}}^{k}u, \underline{I}_{{T}}^{k}u)^\frac{1}{2} {\textrm{s}}_{{\textbf {K}},T}(\underline{I}_{{T}}^{k}z_g, \underline{I}_{{T}}^{k}z_g)^\frac{1}{2} \\{} & {} \lesssim h_{T}^{k+1}|u|_{{\textbf {K}},H^{k+2}(T)} h_{T}|z_g|_{{\textbf {K}},H^{2}(T)}. \end{aligned}$$
It also follows from a Cauchy–Schwarz inequality, the continuous trace inequality (
1.4) and the approximation properties (
2.7) that
$$\begin{aligned}{} & {} (\nabla (u {-} \pi _{{\textbf {K}}, T}^{1, k+1}u) \cdot {\varvec{n}}_{{T}}, z_g {-} \pi _{T}^{0, k} z_g)_{\partial T} {\le } \Vert \nabla (u {-} \pi _{{\textbf {K}}, T}^{1, k+1}u)\cdot {\varvec{n}}_{{T}}\Vert _{\partial T} \Vert z_g {-} \pi _{T}^{0, k} z_g\Vert _{\partial T} \\{} & {} \quad \lesssim h_{T}^{k+1}|u|_{H^{k+2}(T)}h_{T}^{-\frac{1}{2}}\Vert z_g - \pi _{T}^{0, k} z_g\Vert _{\partial T}. \end{aligned}$$
Thus, we need to prove that
$$\begin{aligned} h_{T}^{-\frac{1}{2}}\Vert z_g - \pi _{T}^{0, k} z_g\Vert _{\partial T} \lesssim h_{T}|z_g|_{H^{2}(T)} \end{aligned}$$
and the proof follows from the elliptic regularity (
3.5) and the bound
\(\Vert g\Vert _{\Omega }\le 1\). By a continuous trace inequality and a Poincaré–Wirtinger inequality
$$\begin{aligned} h_{T}^{-\frac{1}{2}}\Vert z_g - \pi _{T}^{0, k} z_g\Vert _{\partial T} \lesssim \Vert \nabla (z_g - \pi _{T}^{0, k} z_g)\Vert _{T}. \end{aligned}$$
The result holds due to the
\(H^1\)-approximation properties of the
\(L^2\)-projector [
22, Lemma 1.43] which remain valid in curved domains.