Skip to main content
Top
Published in: Archive of Applied Mechanics 1/2022

01-11-2021 | Original

A new approach to nonlinear quartic oscillators

Authors: Rami Ahmad El-Nabulsi, Waranont Anukool

Published in: Archive of Applied Mechanics | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we proved that damped quadratic nonlinear oscillators similar to Duffing and Helmholtz–Duffing damped equations which emerge in bubble dynamics with time-periodic straining flows and solitary-like wave's dynamics may be derived from a new functional approach based on nonstandard Lagrangians and fractional frictions. The solutions of these equations are given in terms of the Jacobi elliptic functions. It was observed that the dynamical model constructed in this study is comparable to dynamical systems with natural Lagrangians for which the Riemann structure is conformally flat which has important implications in dynamical systems with position-dependent mass.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Delvenne, J.-C., Sandberg, H.: Dissipative open systems theory as a foundation for the thermodynamics of linear systems. Philos. Trans. R. Soc. A375, 2160218 (2018) Delvenne, J.-C., Sandberg, H.: Dissipative open systems theory as a foundation for the thermodynamics of linear systems. Philos. Trans. R. Soc. A375, 2160218 (2018)
4.
go back to reference El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172, 1617–1640 (2018)MathSciNetMATH El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172, 1617–1640 (2018)MathSciNetMATH
5.
go back to reference El-Nabulsi, R.A., Torres, D.F.M.: Fractional actionlike variational problems. J. Math. Phys. 49, 053521–053528 (2008)MathSciNetMATH El-Nabulsi, R.A., Torres, D.F.M.: Fractional actionlike variational problems. J. Math. Phys. 49, 053521–053528 (2008)MathSciNetMATH
6.
go back to reference El-Nabulsi, R.A.: A fractional approach to nonconservative Lagrangian dynamical systems. Fiz. A14, 289–298 (2005) El-Nabulsi, R.A.: A fractional approach to nonconservative Lagrangian dynamical systems. Fiz. A14, 289–298 (2005)
7.
go back to reference El-Nabulsi, R.A.: Path integral method for quantum dissipative quantum systems with dynamical friction: applications to quantum dots/zero-dimensional nanocrystals. Superlatt. Microstruct. 144, 106581 (2020) El-Nabulsi, R.A.: Path integral method for quantum dissipative quantum systems with dynamical friction: applications to quantum dots/zero-dimensional nanocrystals. Superlatt. Microstruct. 144, 106581 (2020)
8.
go back to reference Udriste, C., Opris, D.: Euler–Lagrange–Hamilton dynamics with fractional action. WSEAS Trans. Math. 7, 19–30 (2008)MathSciNet Udriste, C., Opris, D.: Euler–Lagrange–Hamilton dynamics with fractional action. WSEAS Trans. Math. 7, 19–30 (2008)MathSciNet
9.
go back to reference Atanackovic, T.M., Konjik, S., Pilipovic, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A 41(9), 095201–095213 (2008)MathSciNetMATH Atanackovic, T.M., Konjik, S., Pilipovic, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A 41(9), 095201–095213 (2008)MathSciNetMATH
10.
go back to reference Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)MathSciNet Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)MathSciNet
11.
go back to reference Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)MathSciNet Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)MathSciNet
12.
go back to reference El-Nabulsi, R.A.: Nonstandard Lagrangian cosmology. J. Theor. Appl. Phys. 7, 58 (2013) El-Nabulsi, R.A.: Nonstandard Lagrangian cosmology. J. Theor. Appl. Phys. 7, 58 (2013)
13.
go back to reference El-Nabulsi, R.A.: Non-standard Lagrangians with higher-order derivatives and the Hamiltonian formalism. Proc. Natl Acad. Sci. India A Phys. Sci. 85, 247–252 (2015)MathSciNetMATH El-Nabulsi, R.A.: Non-standard Lagrangians with higher-order derivatives and the Hamiltonian formalism. Proc. Natl Acad. Sci. India A Phys. Sci. 85, 247–252 (2015)MathSciNetMATH
14.
go back to reference El-Nabulsi, R.A.: Nonlinear dynamics with nonstandard Lagrangians. Qual. Theor. Dyn. Syst. 12, 273–291 (2012)MATH El-Nabulsi, R.A.: Nonlinear dynamics with nonstandard Lagrangians. Qual. Theor. Dyn. Syst. 12, 273–291 (2012)MATH
15.
go back to reference El-Nabulsi, R.A.: Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional. Indian J. Phys. 87, 465–470 (2013) El-Nabulsi, R.A.: Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional. Indian J. Phys. 87, 465–470 (2013)
16.
go back to reference El-Nabulsi, R.A., Soulati, T.A., Rezazadeh, H.: Non-standard complex Lagrangian dynamics. J. Adv. Res. Dyn. Cont. Syst. 5, 50–62 (2013)MathSciNet El-Nabulsi, R.A., Soulati, T.A., Rezazadeh, H.: Non-standard complex Lagrangian dynamics. J. Adv. Res. Dyn. Cont. Syst. 5, 50–62 (2013)MathSciNet
17.
go back to reference El-Nabulsi, R.A.: Quantum field theory from an exponential action functional. Indian J. Phys. 87, 379–383 (2013) El-Nabulsi, R.A.: Quantum field theory from an exponential action functional. Indian J. Phys. 87, 379–383 (2013)
18.
19.
go back to reference El-Nabulsi, R.A.: Electrodynamics of relativistic particles through non-standard Lagrangians. J. Atom. Mol. Sci. 5, 268–278 (2014) El-Nabulsi, R.A.: Electrodynamics of relativistic particles through non-standard Lagrangians. J. Atom. Mol. Sci. 5, 268–278 (2014)
20.
go back to reference El-Nabulsi, R.A.: Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation. Nonlinear Dyn. 79, 2055–2068 (2015)MathSciNetMATH El-Nabulsi, R.A.: Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation. Nonlinear Dyn. 79, 2055–2068 (2015)MathSciNetMATH
21.
go back to reference El-Nabulsi, R.A.: Non-standard power-law Lagrangians in classical and quantum dynamics. Appl. Math. Lett. 43, 120–127 (2015)MathSciNetMATH El-Nabulsi, R.A.: Non-standard power-law Lagrangians in classical and quantum dynamics. Appl. Math. Lett. 43, 120–127 (2015)MathSciNetMATH
22.
go back to reference El-Nabulsi, R.A.: Fractional variational symmetries of Lagrangians, the fractional Galilean transformation and the modified Schrödinger equation. Nonlinear Dyn. 81, 939–948 (2015)MathSciNetMATH El-Nabulsi, R.A.: Fractional variational symmetries of Lagrangians, the fractional Galilean transformation and the modified Schrödinger equation. Nonlinear Dyn. 81, 939–948 (2015)MathSciNetMATH
23.
go back to reference El-Nabulsi, R.A.: Classical string field mechanics with non-standard Lagrangians. Math. Sci. 9, 173–179 (2015)MathSciNetMATH El-Nabulsi, R.A.: Classical string field mechanics with non-standard Lagrangians. Math. Sci. 9, 173–179 (2015)MathSciNetMATH
24.
go back to reference El-Nabulsi, R.A.: Fractional variational approach with non-standard power-law degenerate Lagrangians and a generalized derivative operator. Tbilisi Math. J. 9, 279–293 (2016)MathSciNetMATH El-Nabulsi, R.A.: Fractional variational approach with non-standard power-law degenerate Lagrangians and a generalized derivative operator. Tbilisi Math. J. 9, 279–293 (2016)MathSciNetMATH
25.
go back to reference El-Nabulsi, R.A.: Generalized Klein-Gordon and Dirac equations from nonlocal kinetic approach. Z. Naturforsch. 71, 817–821 (2016) El-Nabulsi, R.A.: Generalized Klein-Gordon and Dirac equations from nonlocal kinetic approach. Z. Naturforsch. 71, 817–821 (2016)
26.
go back to reference El-Nabulsi, R.A.: Higher-order geodesic equations from non-local Lagrangians and complex backward–forward derivative operators. Anal. Univ. Vest Timisoara Math. Inform. 54, 139–157 (2016)MathSciNet El-Nabulsi, R.A.: Higher-order geodesic equations from non-local Lagrangians and complex backward–forward derivative operators. Anal. Univ. Vest Timisoara Math. Inform. 54, 139–157 (2016)MathSciNet
27.
go back to reference El-Nabulsi, R.A.: Non-standard higher-order G-strand partial differential equations on matrix Lie algebra. J. Nig. Math. Soc. 36, 101–112 (2017)MathSciNetMATH El-Nabulsi, R.A.: Non-standard higher-order G-strand partial differential equations on matrix Lie algebra. J. Nig. Math. Soc. 36, 101–112 (2017)MathSciNetMATH
28.
go back to reference El-Nabulsi, R.A.: Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator. Phys. E Low-Dimens. Syst. Nanostruct. 98, 90–104 (2018) El-Nabulsi, R.A.: Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator. Phys. E Low-Dimens. Syst. Nanostruct. 98, 90–104 (2018)
29.
go back to reference El-Nabulsi, R.A.: Massive photons in magnetic materials from nonlocal quantization. J. Magn. Magnet. Mater. 458, 213–216 (2018) El-Nabulsi, R.A.: Massive photons in magnetic materials from nonlocal quantization. J. Magn. Magnet. Mater. 458, 213–216 (2018)
30.
go back to reference El-Nabulsi, R.A.: Fourth-order Ginzburg–Landau differential equation a la Fisher–Kolmogorov and quantum aspects of superconductivity. Phys. C Supercond. Appl. 567, 1353545 (2019) El-Nabulsi, R.A.: Fourth-order Ginzburg–Landau differential equation a la Fisher–Kolmogorov and quantum aspects of superconductivity. Phys. C Supercond. Appl. 567, 1353545 (2019)
31.
go back to reference El-Nabulsi, R.A.: Quantum LC-circuit satisfying the Schrodinger–Fisher–Kolmogorov equation and quantization of DC-Pumped Josephson parametric amplifier. Phys. E Low-Dimens. Syst. Nanostruct. 112, 115–120 (2019) El-Nabulsi, R.A.: Quantum LC-circuit satisfying the Schrodinger–Fisher–Kolmogorov equation and quantization of DC-Pumped Josephson parametric amplifier. Phys. E Low-Dimens. Syst. Nanostruct. 112, 115–120 (2019)
32.
go back to reference El-Nabulsi, R.A.: Modified field equations from a complexified nonlocal metric. Canad. J. Phys. 97, 816–827 (2019) El-Nabulsi, R.A.: Modified field equations from a complexified nonlocal metric. Canad. J. Phys. 97, 816–827 (2019)
34.
go back to reference El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy description of superconductivity. Phys. C Supercond. Appl. 577, 1353716 (2020) El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy description of superconductivity. Phys. C Supercond. Appl. 577, 1353716 (2020)
35.
go back to reference El-Nabulsi, R.A.: Non-standard magnetohydrodynamics equations and their implications in sunspots. Proc. R. Soc. A476, 20200190 (2020)MathSciNetMATH El-Nabulsi, R.A.: Non-standard magnetohydrodynamics equations and their implications in sunspots. Proc. R. Soc. A476, 20200190 (2020)MathSciNetMATH
37.
go back to reference Jiang, J., Feng, Y., Xu, S.: Noether’s symmetries and its inverse for fractional logarithmic Lagrangian systems. J. Syst. Sci. Inform. 7, 90–98 (2019) Jiang, J., Feng, Y., Xu, S.: Noether’s symmetries and its inverse for fractional logarithmic Lagrangian systems. J. Syst. Sci. Inform. 7, 90–98 (2019)
38.
go back to reference Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Mathods Theor. 41, 055205 (2008)MathSciNetMATH Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Mathods Theor. 41, 055205 (2008)MathSciNetMATH
39.
go back to reference Musielak, Z.E., Roy, D., Swift, K.D.: Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients. Chaos Solitons Fractals 38, 894–902 (2008)MathSciNetMATH Musielak, Z.E., Roy, D., Swift, K.D.: Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients. Chaos Solitons Fractals 38, 894–902 (2008)MathSciNetMATH
40.
go back to reference Musielak, Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42, 2645–2652 (2009)MathSciNetMATH Musielak, Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42, 2645–2652 (2009)MathSciNetMATH
41.
go back to reference Musielak, Z.E., Davachi, N., Rosario-Franco, M.: Lagrangians, gauge transformations and Lie groups for semigroup of second-order differential equations. J. Appl. Math. 2020, 1–11 (2020) Musielak, Z.E., Davachi, N., Rosario-Franco, M.: Lagrangians, gauge transformations and Lie groups for semigroup of second-order differential equations. J. Appl. Math. 2020, 1–11 (2020)
42.
go back to reference Musielak, Z.E., Davachi, N., Rosario-Franco, M.: Special functions of mathematical physics: a unified Lagrangian formalism. Mathematics 8, 379 (2020) Musielak, Z.E., Davachi, N., Rosario-Franco, M.: Special functions of mathematical physics: a unified Lagrangian formalism. Mathematics 8, 379 (2020)
43.
go back to reference Saha, A., Talukdar, B.: Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 73, 299–309 (2014)MathSciNetMATH Saha, A., Talukdar, B.: Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 73, 299–309 (2014)MathSciNetMATH
44.
go back to reference Song, J., Zhang, Y.: Noether’s theorems for dynamical systems of two kinds of non-standard Hamiltonians. Acta Mech. 229, 285–297 (2018)MathSciNetMATH Song, J., Zhang, Y.: Noether’s theorems for dynamical systems of two kinds of non-standard Hamiltonians. Acta Mech. 229, 285–297 (2018)MathSciNetMATH
45.
go back to reference Zhang, Y., Zhou, X.S.: Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dyn. 84, 1867–1976 (2016)MathSciNetMATH Zhang, Y., Zhou, X.S.: Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dyn. 84, 1867–1976 (2016)MathSciNetMATH
46.
go back to reference Zhou, X.S., Zhang, Y.: Routh method of reduction for dynamical systems with non-standard Lagrangians. Chin. Quart. Mech. 37, 15–21 (2016) Zhou, X.S., Zhang, Y.: Routh method of reduction for dynamical systems with non-standard Lagrangians. Chin. Quart. Mech. 37, 15–21 (2016)
47.
go back to reference Zhang, Y., Wang, X.-P.: Mei symmetry and invariants of quasi-fractional dynamical systems with non-standard Lagrangians. Symmetry 11, 1061 (2019) Zhang, Y., Wang, X.-P.: Mei symmetry and invariants of quasi-fractional dynamical systems with non-standard Lagrangians. Symmetry 11, 1061 (2019)
48.
go back to reference Davachi, N., Musielak, Z.E.: Generalized non-standard Lagrangians. J. Undergrad. Rept. Phys. 29, 100004 (2019) Davachi, N., Musielak, Z.E.: Generalized non-standard Lagrangians. J. Undergrad. Rept. Phys. 29, 100004 (2019)
49.
go back to reference Cariñena, J.F., Ranada, M.F., Santander, M.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703 (2005)MathSciNetMATH Cariñena, J.F., Ranada, M.F., Santander, M.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703 (2005)MathSciNetMATH
50.
go back to reference Cariñena, J.F., Nuñez, J.F.: Geometric approach to dynamics obtained by deformation of Lagrangians. Nonlinear Dyn. 83, 457–461 (2016)MathSciNetMATH Cariñena, J.F., Nuñez, J.F.: Geometric approach to dynamics obtained by deformation of Lagrangians. Nonlinear Dyn. 83, 457–461 (2016)MathSciNetMATH
51.
go back to reference Cariñena, J.F., Nuñez, J.F.: Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians. Nonlinear Dyn. 86, 1285–1291 (2016)MathSciNetMATH Cariñena, J.F., Nuñez, J.F.: Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians. Nonlinear Dyn. 86, 1285–1291 (2016)MathSciNetMATH
52.
go back to reference Cariñena, J.F.: Non-standard Hamiltonian structures of the Lienard equation and contact geometry. Int. J. Geom. Methods Mod. Phys. 16, 1940001 (2019)MathSciNetMATH Cariñena, J.F.: Non-standard Hamiltonian structures of the Lienard equation and contact geometry. Int. J. Geom. Methods Mod. Phys. 16, 1940001 (2019)MathSciNetMATH
53.
go back to reference Cieslinski, J.L., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A: Math. Gen. 43, 175205 (2010)MathSciNetMATH Cieslinski, J.L., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A: Math. Gen. 43, 175205 (2010)MathSciNetMATH
54.
go back to reference Madison, J.V.: Isenthalpic oscillations with quadratic damping in saturated two-phase fluids. WIT Trans. Eng. Sci. 74, 393–401 (2012)MATH Madison, J.V.: Isenthalpic oscillations with quadratic damping in saturated two-phase fluids. WIT Trans. Eng. Sci. 74, 393–401 (2012)MATH
58.
go back to reference Smith, B.R., Jr.: The quadratically damped oscillator: a case study of a non-linear equation of motion. Am. J. Phys. 80, 816–824 (2012) Smith, B.R., Jr.: The quadratically damped oscillator: a case study of a non-linear equation of motion. Am. J. Phys. 80, 816–824 (2012)
59.
go back to reference Liu, Q.M.: Exact solutions to nonlinear equations with quadratic numerically. J. Phys. A Math. Gen. 34, 5083 (2001)MATH Liu, Q.M.: Exact solutions to nonlinear equations with quadratic numerically. J. Phys. A Math. Gen. 34, 5083 (2001)MATH
60.
go back to reference Mondal, M.M.H., Molla, M.H.U., Razzak, M.A., Alam, M.S.: A new analytical approach for solving quadratic nonlinear oscillators. Alex. Eng. J. 56, 629–634 (2017) Mondal, M.M.H., Molla, M.H.U., Razzak, M.A., Alam, M.S.: A new analytical approach for solving quadratic nonlinear oscillators. Alex. Eng. J. 56, 629–634 (2017)
61.
go back to reference Alam, M.S., Haque, M.E., Hossian, M.B.: A new analytical technique to find periodic solutions of nonlinear systems. In. J. Nonlinear Mech. 42, 1037–1045 (2007) Alam, M.S., Haque, M.E., Hossian, M.B.: A new analytical technique to find periodic solutions of nonlinear systems. In. J. Nonlinear Mech. 42, 1037–1045 (2007)
62.
go back to reference Hossain, M.A., Rahman, M.S., Alam, M.S., Amin, M.R.: An analytical technique for solving a class of strongly nonlinear conservative systems. J. Appl. Math. Comput. 218, 5474–5486 (2012)MathSciNetMATH Hossain, M.A., Rahman, M.S., Alam, M.S., Amin, M.R.: An analytical technique for solving a class of strongly nonlinear conservative systems. J. Appl. Math. Comput. 218, 5474–5486 (2012)MathSciNetMATH
63.
go back to reference Bogoliubov, N.N., Mitropolskii, Yu.A.: Asymptotic methods in the theory of nonlinear oscillations. Gordan and Breach, New York (1961) Bogoliubov, N.N., Mitropolskii, Yu.A.: Asymptotic methods in the theory of nonlinear oscillations. Gordan and Breach, New York (1961)
64.
go back to reference Lin, T.: Path probability and an extension of least action principle to random variables. Ph.D. Thesis, LUNAM University, Maine University, 19 February (2013) Lin, T.: Path probability and an extension of least action principle to random variables. Ph.D. Thesis, LUNAM University, Maine University, 19 February (2013)
65.
go back to reference Lin, T., Wang, Q.A.: The extrema of an action principle for dissipative mechanical systems. J. Appl. Mech. 81, 031002 (2013) Lin, T., Wang, Q.A.: The extrema of an action principle for dissipative mechanical systems. J. Appl. Mech. 81, 031002 (2013)
66.
go back to reference El-Nabulsi, R.A.: Fractional variational approach for dissipative mechanical systems. Anal. Theor. Appl. 30, 1–10 (2014)MathSciNetMATH El-Nabulsi, R.A.: Fractional variational approach for dissipative mechanical systems. Anal. Theor. Appl. 30, 1–10 (2014)MathSciNetMATH
69.
go back to reference Abraham, S., Fernandez de Cordoba, P., Isidro, J.M., Santander, J.L.G.: A mechanics for the Ricci flow. Int. J. Geom. Methods Mod. Phys. 6, 759–767 (2009)MathSciNetMATH Abraham, S., Fernandez de Cordoba, P., Isidro, J.M., Santander, J.L.G.: A mechanics for the Ricci flow. Int. J. Geom. Methods Mod. Phys. 6, 759–767 (2009)MathSciNetMATH
70.
go back to reference Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York (2011)MATH Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York (2011)MATH
71.
go back to reference Mishra, B., Berne, B.J.: Hydrodynamic calculation of the frequency dependent friction on the bond of a diatomic molecule. J. Chem. Phys. 103, 1160–1174 (1995) Mishra, B., Berne, B.J.: Hydrodynamic calculation of the frequency dependent friction on the bond of a diatomic molecule. J. Chem. Phys. 103, 1160–1174 (1995)
72.
go back to reference Baek, S. Y., Kim, K.: Development of a time-dependent friction model for frictional aging at the nanoscale. Nanoscale Bio. Materials 2016, ID7908345 (2016) Baek, S. Y., Kim, K.: Development of a time-dependent friction model for frictional aging at the nanoscale. Nanoscale Bio. Materials 2016, ID7908345 (2016)
73.
go back to reference Li, Q., Tullis, T.E., Goldsby, D., Carpick, R.W.: Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480(7376), 233–236 (2011) Li, Q., Tullis, T.E., Goldsby, D., Carpick, R.W.: Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480(7376), 233–236 (2011)
74.
go back to reference Candelier, F., Mehlig, B., Magnaudet, J.: Time-dependent lift and drag on a rigid body in a viscous steady linear flow. J. Fluid Mech. 184, 554–595 (2019)MathSciNetMATH Candelier, F., Mehlig, B., Magnaudet, J.: Time-dependent lift and drag on a rigid body in a viscous steady linear flow. J. Fluid Mech. 184, 554–595 (2019)MathSciNetMATH
75.
go back to reference Zwörner, O., Hölscher, H., Schwarz, U.D., Wiesendanger, R.: The velocity dependence of frictional forces in point-contact friction. Appl. Phys. A 66, S263–S267 (1998) Zwörner, O., Hölscher, H., Schwarz, U.D., Wiesendanger, R.: The velocity dependence of frictional forces in point-contact friction. Appl. Phys. A 66, S263–S267 (1998)
76.
go back to reference Braun, O.M., Peyrard, M.: Dependence of kinetic friction on velocity: master equation approach. Phys. Rev. E 83, 046129 (2011) Braun, O.M., Peyrard, M.: Dependence of kinetic friction on velocity: master equation approach. Phys. Rev. E 83, 046129 (2011)
77.
go back to reference Neria, E., Karplus, M.: A position dependent friction model for solution reactions in the high friction regime: proton transfer in triosephosphate isomerase (TIM). J. Chem. Phys. 105, 10812 (1996) Neria, E., Karplus, M.: A position dependent friction model for solution reactions in the high friction regime: proton transfer in triosephosphate isomerase (TIM). J. Chem. Phys. 105, 10812 (1996)
78.
go back to reference Berberan-Santos, M.N., Bodunov, E.N., Pogliani, L.: Classical and quantum study of the motion of a particle in a gravitational field. J. Math. Chem. 37, 101–115 (2005)MathSciNetMATH Berberan-Santos, M.N., Bodunov, E.N., Pogliani, L.: Classical and quantum study of the motion of a particle in a gravitational field. J. Math. Chem. 37, 101–115 (2005)MathSciNetMATH
79.
go back to reference Guedes, I.: Solution of the Schrödinger equation for the time-dependent linear potential. Phys. Rev. A 63, 034102 (2001) Guedes, I.: Solution of the Schrödinger equation for the time-dependent linear potential. Phys. Rev. A 63, 034102 (2001)
80.
go back to reference El-Nabulsi, R.A.: Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics. Eur. Phys. J. Plus 134, 192 (2019) El-Nabulsi, R.A.: Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics. Eur. Phys. J. Plus 134, 192 (2019)
81.
go back to reference El-Nabulsi, R.A.: Dirac equation with position-dependent mass and Coulomb-like field in Hausdorff dimension. Few Body Syst. 61, 10 (2020) El-Nabulsi, R.A.: Dirac equation with position-dependent mass and Coulomb-like field in Hausdorff dimension. Few Body Syst. 61, 10 (2020)
82.
go back to reference El-Nabulsi, R.A.: On nonlocal complexified Schrödinger equation and emergence of discrete quantum mechanics. Quant. Stud. Math. Found. 3, 327–335 (2016)MATH El-Nabulsi, R.A.: On nonlocal complexified Schrödinger equation and emergence of discrete quantum mechanics. Quant. Stud. Math. Found. 3, 327–335 (2016)MATH
83.
go back to reference Glasser, M.L., Nieto, L.M.: The energy level structure of a variety of one-dimensional confining potentials and the effects of a local singular perturbation. Canad. J. Phys. 93, 1588–1596 (2015) Glasser, M.L., Nieto, L.M.: The energy level structure of a variety of one-dimensional confining potentials and the effects of a local singular perturbation. Canad. J. Phys. 93, 1588–1596 (2015)
84.
go back to reference Cveticanin, L.: Oscillator with strong quadratic damping force. Publ. Inst. Math. 85, 119–130 (2009)MathSciNetMATH Cveticanin, L.: Oscillator with strong quadratic damping force. Publ. Inst. Math. 85, 119–130 (2009)MathSciNetMATH
85.
go back to reference Craik, A.D.D.: Wave Interactions and Fluid Flows. Cambridge University Press, Cambridge (1985)MATH Craik, A.D.D.: Wave Interactions and Fluid Flows. Cambridge University Press, Cambridge (1985)MATH
86.
go back to reference Kang, L.S., Leal, L.G.: Bubble dynamics in time-periodic straining flows. J. Fluid Mech. 218, 41–69 (1990)MathSciNetMATH Kang, L.S., Leal, L.G.: Bubble dynamics in time-periodic straining flows. J. Fluid Mech. 218, 41–69 (1990)MathSciNetMATH
87.
go back to reference Kang, L.S.: Dynamics of a conducting drop in a time-periodic electric field. J. Fluid Mech. 257, 229–264 (1993)MathSciNetMATH Kang, L.S.: Dynamics of a conducting drop in a time-periodic electric field. J. Fluid Mech. 257, 229–264 (1993)MathSciNetMATH
88.
go back to reference Bogdanova-Ryzhova, E.V., Rhyzov, O.S.: Solitary-like waves in boundary-layer flows and their randomization. Philos. Trans. R. Soc. A 352, 389–404 (1995)MathSciNetMATH Bogdanova-Ryzhova, E.V., Rhyzov, O.S.: Solitary-like waves in boundary-layer flows and their randomization. Philos. Trans. R. Soc. A 352, 389–404 (1995)MathSciNetMATH
89.
go back to reference Zhu, J.-W.: A new exact solution of a damped quadratic non-linear oscillator. Appl. Math. Model. 38, 5986–5993 (2014)MathSciNetMATH Zhu, J.-W.: A new exact solution of a damped quadratic non-linear oscillator. Appl. Math. Model. 38, 5986–5993 (2014)MathSciNetMATH
90.
go back to reference Sanjuan, M.A.F.: Effect of nonlinear damping on the universal escape oscillator. Int. J. Bifurcat. Chaos 9, 735–744 (1999)MATH Sanjuan, M.A.F.: Effect of nonlinear damping on the universal escape oscillator. Int. J. Bifurcat. Chaos 9, 735–744 (1999)MATH
91.
go back to reference Benenti, S.: The Lagrangian and Hamiltonian formulations for a special class of non-conservative systems. In: Gaeta, G. (ed.) Symmetry and Perturbation Theory. World Scientific Publishing, Singapore (2005)MATH Benenti, S.: The Lagrangian and Hamiltonian formulations for a special class of non-conservative systems. In: Gaeta, G. (ed.) Symmetry and Perturbation Theory. World Scientific Publishing, Singapore (2005)MATH
92.
go back to reference Cariñena, J.F., Gheorghiu, I., Martínez, E., Santos, P.: Conformal Killing vector fields and a virial theorem. J. Phys. A Math. Theor. 47, 465206 (2014)MathSciNetMATH Cariñena, J.F., Gheorghiu, I., Martínez, E., Santos, P.: Conformal Killing vector fields and a virial theorem. J. Phys. A Math. Theor. 47, 465206 (2014)MathSciNetMATH
93.
go back to reference Crampin, M., Sarlet, W.: A class of nonconservative Lagrangian systems on Riemannian manifolds. J. Math. Phys. 42, 4313–4326 (2001)MathSciNetMATH Crampin, M., Sarlet, W.: A class of nonconservative Lagrangian systems on Riemannian manifolds. J. Math. Phys. 42, 4313–4326 (2001)MathSciNetMATH
94.
go back to reference Mustafa, O.: Position-dependent mass Lagrangians: nonlocal transformations, Euler-Lagrange invariance and exact solvability. J. Phys. A Math. Theor. 48, 225206 (2015)MathSciNetMATH Mustafa, O.: Position-dependent mass Lagrangians: nonlocal transformations, Euler-Lagrange invariance and exact solvability. J. Phys. A Math. Theor. 48, 225206 (2015)MathSciNetMATH
95.
go back to reference y Cruz, S.C., Rosas-Ortiz, O.: Position-dependent mass oscillators and coherent states. J. Phys. A Math. Theor. 42, 185205 (2009)MathSciNetMATH y Cruz, S.C., Rosas-Ortiz, O.: Position-dependent mass oscillators and coherent states. J. Phys. A Math. Theor. 42, 185205 (2009)MathSciNetMATH
96.
go back to reference y Cruz, S.C., Negro, J., Nieto, L.M.: On position-dependent mass harmonic oscillators. J. Phys. Conf. Ser. 128, 012053 (2008) y Cruz, S.C., Negro, J., Nieto, L.M.: On position-dependent mass harmonic oscillators. J. Phys. Conf. Ser. 128, 012053 (2008)
97.
go back to reference El-Nabulsi, R.A.: Nonlocal thermodynamics properties of position-dependent mass particle in magnetic and Aharonov–Bohm flux fields. Few Body Syst. 61, 37 (2020) El-Nabulsi, R.A.: Nonlocal thermodynamics properties of position-dependent mass particle in magnetic and Aharonov–Bohm flux fields. Few Body Syst. 61, 37 (2020)
98.
go back to reference El-Nabulsi, R.A.: Inverse-power potentials with positive-bound energy spectrum from fractal, extended uncertainty principle and position-dependent mass arguments. Eur. Phys. J. P 135, 683 (2020) El-Nabulsi, R.A.: Inverse-power potentials with positive-bound energy spectrum from fractal, extended uncertainty principle and position-dependent mass arguments. Eur. Phys. J. P 135, 683 (2020)
99.
go back to reference Yu, J., Dong, S.-H., Sun, G.-H.: Series solutions of the Schrödinger equation with position-dependent mass for the Morse potential. Phys. Lett. A 322, 290–297 (2004)MathSciNetMATH Yu, J., Dong, S.-H., Sun, G.-H.: Series solutions of the Schrödinger equation with position-dependent mass for the Morse potential. Phys. Lett. A 322, 290–297 (2004)MathSciNetMATH
100.
go back to reference Dong, S.H., Peña, J.J., Pacheco-Garcia, C., Garcia-Ravelo, J.: Algebraic approach to the position-dependent mass Schrödinger for a singular oscillator. Mod. Phys. Lett. A 22, 1039–1045 (2007)MATH Dong, S.H., Peña, J.J., Pacheco-Garcia, C., Garcia-Ravelo, J.: Algebraic approach to the position-dependent mass Schrödinger for a singular oscillator. Mod. Phys. Lett. A 22, 1039–1045 (2007)MATH
101.
go back to reference Eshghi, M., Sever, R., Ikhdair, S.M.: Energy states of the Hulthén plus Coulomb-like potential with position-dependent mass function in external magnetic fields. Chin. Phys. B 27, 020301–020305 (2018) Eshghi, M., Sever, R., Ikhdair, S.M.: Energy states of the Hulthén plus Coulomb-like potential with position-dependent mass function in external magnetic fields. Chin. Phys. B 27, 020301–020305 (2018)
102.
go back to reference Dong, S.H., Pena, J.J., Pacheco-Garcia, C., Garcia-Ravelo, J.: Algebraic approach to the position-dependent mass Schrödinger for a singular oscillator. Mod. Phys. Lett. A 22, 1039–1045 (2007)MATH Dong, S.H., Pena, J.J., Pacheco-Garcia, C., Garcia-Ravelo, J.: Algebraic approach to the position-dependent mass Schrödinger for a singular oscillator. Mod. Phys. Lett. A 22, 1039–1045 (2007)MATH
103.
go back to reference Gubbiotti, G., Nucci, M.C.: Quantization of quadratic Liénard-type equations by preserving Noether symmetries. J. Math. Anal. Appl. 422, 1235–1246 (2015)MathSciNetMATH Gubbiotti, G., Nucci, M.C.: Quantization of quadratic Liénard-type equations by preserving Noether symmetries. J. Math. Anal. Appl. 422, 1235–1246 (2015)MathSciNetMATH
104.
go back to reference Tiwari, A.K., Pandey, S.N., Senthilvelan, M., Lakshmanan, M.: Classification of Lie point symmetries for quadratic Liénard type equation . J. Math. Phys. 54, 053506 (2013) Tiwari, A.K., Pandey, S.N., Senthilvelan, M., Lakshmanan, M.: Classification of Lie point symmetries for quadratic Liénard type equation . J. Math. Phys. 54, 053506 (2013)
Metadata
Title
A new approach to nonlinear quartic oscillators
Authors
Rami Ahmad El-Nabulsi
Waranont Anukool
Publication date
01-11-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 1/2022
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-02062-5

Other articles of this Issue 1/2022

Archive of Applied Mechanics 1/2022 Go to the issue

Premium Partners