Skip to main content
Top

2017 | OriginalPaper | Chapter

5. A New Approach to the Identification of Sensory Processing Circuits Based on Spiking Neuron Data

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The cascade model, comprising a filter in series with a spiking neuron, have been widely used as representation for spiking neural circuits. Although the state-of-the-art identification methods for cascade models can accommodate a wide range of filters and spiking neurons, the assumptions proposed can in some cases be considered restrictive. Specifically, for [Filter]-[IF] circuits, it is assumed that the IF model is known, or that the filter output is available for measurement. In this chapter, two new identification methodologies are proposed for neural circuits comprising a linear or nonlinear filter in cascade with a spiking neuron. A [Nonlinear Filter]-[Ideal IF] circuit is reformulated as a scaled nonlinear filter in series with a modified ideal IF neuron. The identification is subsequently carried out by employing the NARMAX nonlinear system identification methodology to infer the structure and parameters of a discrete-time representation for the scaled nonlinear filter. An equivalent [Linear Filter]-[Leaky IF] circuit is identified, assuming that input-output measurements of the spiking neuron are not available and that all parameters are unknown. The leaky IF model is identified by solving an equation whose solution is proven to be unique. An algorithm is provided that computes the solution with arbitrary precision. Subsequently, the structure and parameters of the filter are inferred using the NARMAX identification methodology. Numerical simulations are given to test the performance of the new methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bartolini P, Carcano EC, Piroddi L, Valdes JB (2008) Forecasting daily streamflows using narmax models: How disturbances may affect model performance. In: World environmental and water resources congress 2008. ASCE, pp 1–13 Bartolini P, Carcano EC, Piroddi L, Valdes JB (2008) Forecasting daily streamflows using narmax models: How disturbances may affect model performance. In: World environmental and water resources congress 2008. ASCE, pp 1–13
go back to reference Billings SA (2013) Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. Wiley Billings SA (2013) Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. Wiley
go back to reference Billings SA, Coca D (2002) Identification of narmax and related models. In: Control systems, robotics and automation VI Billings SA, Coca D (2002) Identification of narmax and related models. In: Control systems, robotics and automation VI
go back to reference Billings S, Korenberg M, Chen S (1988) Identification of non-linear output-affine systems using an orthogonal least-squares algorithm. Int J Syst Sci 19(8):1559–1568CrossRefMATH Billings S, Korenberg M, Chen S (1988) Identification of non-linear output-affine systems using an orthogonal least-squares algorithm. Int J Syst Sci 19(8):1559–1568CrossRefMATH
go back to reference Billings S, Chen S, Korenberg M (1989) Identification of mimo non-linear systems using a forward-regression orthogonal estimator. Int J Control 49(6):2157–2189CrossRefMATH Billings S, Chen S, Korenberg M (1989) Identification of mimo non-linear systems using a forward-regression orthogonal estimator. Int J Control 49(6):2157–2189CrossRefMATH
go back to reference Billings S, Tsang K, Tomlinson G (1990) Spectral analysis for non-linear systems, part iii: case study examples. Mech Syst Signal Process 4(1):3–21CrossRefMATH Billings S, Tsang K, Tomlinson G (1990) Spectral analysis for non-linear systems, part iii: case study examples. Mech Syst Signal Process 4(1):3–21CrossRefMATH
go back to reference Billings S, Chen S (1989) Extended model set, global data and threshold model identification of severely non-linear systems. Int J Control 50(5):1897–1923CrossRefMATH Billings S, Chen S (1989) Extended model set, global data and threshold model identification of severely non-linear systems. Int J Control 50(5):1897–1923CrossRefMATH
go back to reference Billings S, Fadzil M (1984) The practical identification of systems with nonlinearities. University of Sheffield, Technical report, Department of Automatic Control and System Engineering Billings S, Fadzil M (1984) The practical identification of systems with nonlinearities. University of Sheffield, Technical report, Department of Automatic Control and System Engineering
go back to reference Billings S, Leontaritis I (1982) Parameter estimation techniques for nonlinear systems. In: 6th IFAC symposium identification and system parameter estimation, pp 427–433 Billings S, Leontaritis I (1982) Parameter estimation techniques for nonlinear systems. In: 6th IFAC symposium identification and system parameter estimation, pp 427–433
go back to reference Billings S, Tsang K (1989a) Spectral analysis for non-linear systems, part i: parametric non-linear spectral analysis. Mech Syst Signal Process 3(4):319–339CrossRefMATH Billings S, Tsang K (1989a) Spectral analysis for non-linear systems, part i: parametric non-linear spectral analysis. Mech Syst Signal Process 3(4):319–339CrossRefMATH
go back to reference Billings S, Tsang K (1989b) Spectral analysis for non-linear systems, part ii: interpretation of non-linear frequency response functions. Mech Syst Signal Process 3(4):341–359CrossRefMATH Billings S, Tsang K (1989b) Spectral analysis for non-linear systems, part ii: interpretation of non-linear frequency response functions. Mech Syst Signal Process 3(4):341–359CrossRefMATH
go back to reference Boyd S, Chua LO (1985) Fading memory and the problem of approximating nonlinear operators with volterra series. IEEE Trans Circuits Syst 32(11):1150–1161MathSciNetCrossRefMATH Boyd S, Chua LO (1985) Fading memory and the problem of approximating nonlinear operators with volterra series. IEEE Trans Circuits Syst 32(11):1150–1161MathSciNetCrossRefMATH
go back to reference Chen S, Billings SA, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Control 50(5):1873–1896CrossRefMATH Chen S, Billings SA, Luo W (1989) Orthogonal least squares methods and their application to non-linear system identification. Int J Control 50(5):1873–1896CrossRefMATH
go back to reference Chen S, Billings S (1989) Representations of non-linear systems: the narmax model. Int J Control 49(3):1013–1032CrossRefMATH Chen S, Billings S (1989) Representations of non-linear systems: the narmax model. Int J Control 49(3):1013–1032CrossRefMATH
go back to reference Chua LO, Ng C (1979a) Frequency-domain analysis of nonlinear systems: formulation of transfer functions. IEE J Electron Circuits Syst 3(6):257–269CrossRef Chua LO, Ng C (1979a) Frequency-domain analysis of nonlinear systems: formulation of transfer functions. IEE J Electron Circuits Syst 3(6):257–269CrossRef
go back to reference Chua LO, Ng CY (1979b) Frequency domain analysis of nonlinear systems: general theory. IEE J Electron Circuits Syst 3(4):165–185CrossRef Chua LO, Ng CY (1979b) Frequency domain analysis of nonlinear systems: general theory. IEE J Electron Circuits Syst 3(4):165–185CrossRef
go back to reference Coca D, Balikhin M, Billings S, Alleyne H, Dunlop M, Luhr H (2000) Time-domain identification of nonlinear processes in space plasma turbulence using multi-point measurements. In: Cluster-II workshop multiscale/multipoint plasma measurements, vol 449, p 111 Coca D, Balikhin M, Billings S, Alleyne H, Dunlop M, Luhr H (2000) Time-domain identification of nonlinear processes in space plasma turbulence using multi-point measurements. In: Cluster-II workshop multiscale/multipoint plasma measurements, vol 449, p 111
go back to reference Friederich U, Coca D, Billings S, Juusola M (2009a) Data modelling for analysis of adaptive changes in fly photoreceptors. In: Neural information processing, Springer, pp 34–48 Friederich U, Coca D, Billings S, Juusola M (2009a) Data modelling for analysis of adaptive changes in fly photoreceptors. In: Neural information processing, Springer, pp 34–48
go back to reference Friederich U, Coca D, Billings S, Juusola M (2009b) Nonlinear identification for modeling and analysis of adaptive neuronal systems. Front Syst Neurosci. (Conference abstract: computational and systems neuroscience) Friederich U, Coca D, Billings S, Juusola M (2009b) Nonlinear identification for modeling and analysis of adaptive neuronal systems. Front Syst Neurosci. (Conference abstract: computational and systems neuroscience)
go back to reference Friederich U, Coca D, Billings S, Juusola M (2010) Invariant contrast coding in photoreceptors. In: Front neuroscience conference abstract: computational and systems neuroscience Friederich U, Coca D, Billings S, Juusola M (2010) Invariant contrast coding in photoreceptors. In: Front neuroscience conference abstract: computational and systems neuroscience
go back to reference Fung EH, Wong Y, Ho H, Mignolet MP (2003) Modelling and prediction of machining errors using armax and narmax structures. Appl Math Model 27(8):611–627CrossRefMATH Fung EH, Wong Y, Ho H, Mignolet MP (2003) Modelling and prediction of machining errors using armax and narmax structures. Appl Math Model 27(8):611–627CrossRefMATH
go back to reference Geffen MN, Broome BM, Laurent G, Meister M (2009) Neural encoding of rapidly fluctuating odors. Neuron 61(4):570–586CrossRef Geffen MN, Broome BM, Laurent G, Meister M (2009) Neural encoding of rapidly fluctuating odors. Neuron 61(4):570–586CrossRef
go back to reference George DA (1959) Continuous nonlinear systems. Technical report, DTIC Document George DA (1959) Continuous nonlinear systems. Technical report, DTIC Document
go back to reference Gu Y, Lucas P, Rospars JP (2009) Computational model of the insect pheromone transduction cascade. PLoS Comput Biol 5(3):e1000321CrossRef Gu Y, Lucas P, Rospars JP (2009) Computational model of the insect pheromone transduction cascade. PLoS Comput Biol 5(3):e1000321CrossRef
go back to reference Guo L, Billings S (2007) A modified orthogonal forward regression least-squares algorithm for system modelling from noisy regressors. Int J Control 80(3):340–348MathSciNetCrossRefMATH Guo L, Billings S (2007) A modified orthogonal forward regression least-squares algorithm for system modelling from noisy regressors. Int J Control 80(3):340–348MathSciNetCrossRefMATH
go back to reference Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRef
go back to reference Hong X, Chen S, Harris CJ (2008a) A-optimality orthogonal forward regression algorithm using branch and bound. IEEE Trans Neural Netw 19(11):1961–1967CrossRef Hong X, Chen S, Harris CJ (2008a) A-optimality orthogonal forward regression algorithm using branch and bound. IEEE Trans Neural Netw 19(11):1961–1967CrossRef
go back to reference Hong X, Mitchell RJ, Chen S, Harris CJ, Li K, Irwin GW (2008b) Model selection approaches for non-linear system identification: a review. Int J Syst Sci 39(10):925–946MathSciNetCrossRefMATH Hong X, Mitchell RJ, Chen S, Harris CJ, Li K, Irwin GW (2008b) Model selection approaches for non-linear system identification: a review. Int J Syst Sci 39(10):925–946MathSciNetCrossRefMATH
go back to reference Jones JP (2007) Simplified computation of the volterra frequency response functions of non-linear systems. Mech Syst Signal Process 21(3):1452–1468CrossRef Jones JP (2007) Simplified computation of the volterra frequency response functions of non-linear systems. Mech Syst Signal Process 21(3):1452–1468CrossRef
go back to reference Kim AJ, Lazar AA, Slutskiy YB (2011) System identification of drosophila olfactory sensory neurons. J Comput Neurosci 30(1):143–161CrossRef Kim AJ, Lazar AA, Slutskiy YB (2011) System identification of drosophila olfactory sensory neurons. J Comput Neurosci 30(1):143–161CrossRef
go back to reference Korenberg M, Billings S, Liu Y, McIlroy P (1988) Orthogonal parameter estimation algorithm for non-linear stochastic systems. Int J Control 48(1):193–210CrossRefMATH Korenberg M, Billings S, Liu Y, McIlroy P (1988) Orthogonal parameter estimation algorithm for non-linear stochastic systems. Int J Control 48(1):193–210CrossRefMATH
go back to reference Korenberg MJ, Hunter IW (1996) The identification of nonlinear biological systems: Volterra kernel approaches. Ann Biomed Eng 24(2):250–268CrossRef Korenberg MJ, Hunter IW (1996) The identification of nonlinear biological systems: Volterra kernel approaches. Ann Biomed Eng 24(2):250–268CrossRef
go back to reference Lazar AA (2005) Multichannel time encoding with integrate-and-fire neurons. Neurocomputing 65:401–407CrossRef Lazar AA (2005) Multichannel time encoding with integrate-and-fire neurons. Neurocomputing 65:401–407CrossRef
go back to reference Lazar AA, Pnevmatikakis EA (2008) Faithful representation of stimuli with a population of integrate-and-fire neurons. Neural Comput 20(11):2715–2744 Lazar AA, Pnevmatikakis EA (2008) Faithful representation of stimuli with a population of integrate-and-fire neurons. Neural Comput 20(11):2715–2744
go back to reference Lazar AA, Pnevmatikakis EA (2011) Video time encoding machines. IEEE Trans Neural Netw 22(3):461–473CrossRef Lazar AA, Pnevmatikakis EA (2011) Video time encoding machines. IEEE Trans Neural Netw 22(3):461–473CrossRef
go back to reference Lazar AA, Slutskiy YB (2010) Identifying dendritic processing. In: Lafferty J, Williams CKI, Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in neural information processing systems 23, pp 1261–1269. (spotlight presentation) Lazar AA, Slutskiy YB (2010) Identifying dendritic processing. In: Lafferty J, Williams CKI, Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in neural information processing systems 23, pp 1261–1269. (spotlight presentation)
go back to reference Lazar AA, Slutskiy YB (2012) Channel identification machines. J Comput Intell Neurosci 2012:1–20CrossRef Lazar AA, Slutskiy YB (2012) Channel identification machines. J Comput Intell Neurosci 2012:1–20CrossRef
go back to reference Lazar AA, Slutskiy Y (2013) Multisensory encoding, decoding, and identification. In: Advances in neural information processing systems, pp 3183–3191 Lazar AA, Slutskiy Y (2013) Multisensory encoding, decoding, and identification. In: Advances in neural information processing systems, pp 3183–3191
go back to reference Lazar AA, Slutskiy YB (2014a) Channel identification machines for multidimensional receptive fields. Front Comput Neurosci 8 Lazar AA, Slutskiy YB (2014a) Channel identification machines for multidimensional receptive fields. Front Comput Neurosci 8
go back to reference Lazar AA, Slutskiy YB (2014b) Functional identification of spike-processing neural circuits. Neural Comput 26(2):264–305 Lazar AA, Slutskiy YB (2014b) Functional identification of spike-processing neural circuits. Neural Comput 26(2):264–305
go back to reference Lazar AA, Slutskiy YB (2015) Spiking neural circuits with dendritic stimulus processors. J Comput Neurosci 38(1):1–24CrossRef Lazar AA, Slutskiy YB (2015) Spiking neural circuits with dendritic stimulus processors. J Comput Neurosci 38(1):1–24CrossRef
go back to reference Lazar AA, Slutskiy YB, Zhou Y (2015) Massively parallel neural circuits for stereoscopic color vision: encoding, decoding and identification. Neural Netw 63:254–271CrossRefMATH Lazar AA, Slutskiy YB, Zhou Y (2015) Massively parallel neural circuits for stereoscopic color vision: encoding, decoding and identification. Neural Netw 63:254–271CrossRefMATH
go back to reference Lee YW, Chang TL (2009) Application of narx neural networks in thermal dynamics identification of a pulsating heat pipe. Energy Convers Manag 50(4):1069–1078CrossRef Lee YW, Chang TL (2009) Application of narx neural networks in thermal dynamics identification of a pulsating heat pipe. Energy Convers Manag 50(4):1069–1078CrossRef
go back to reference Leontaritis I, Billings SA (1985a) Input-output parametric models for non-linear systems part i: deterministic non-linear systems. Int J Control 41(2):303–328CrossRefMATH Leontaritis I, Billings SA (1985a) Input-output parametric models for non-linear systems part i: deterministic non-linear systems. Int J Control 41(2):303–328CrossRefMATH
go back to reference Leontaritis I, Billings SA (1985b) Input-output parametric models for non-linear systems part ii: stochastic non-linear systems. Int J Control 41(2):329–344CrossRefMATH Leontaritis I, Billings SA (1985b) Input-output parametric models for non-linear systems part ii: stochastic non-linear systems. Int J Control 41(2):329–344CrossRefMATH
go back to reference Leontaritis I, Billings S, SUD of Control Engineering (1981) Identification of non-linear systems using parameter estimation techniques. In: Proceedings of IEEE conference of control and applications, pp 183–190 Leontaritis I, Billings S, SUD of Control Engineering (1981) Identification of non-linear systems using parameter estimation techniques. In: Proceedings of IEEE conference of control and applications, pp 183–190
go back to reference Li L, Billings S (2011) Estimation of generalized frequency response functions for quadratically and cubically nonlinear systems. J Sound Vib 330(3):461–470CrossRef Li L, Billings S (2011) Estimation of generalized frequency response functions for quadratically and cubically nonlinear systems. J Sound Vib 330(3):461–470CrossRef
go back to reference Linkens D, Khelfa M (1992) Control strategies for nonlinear dynamics of muscle relaxant anaesthesia. Comput Methods Programs Biomed 37(1):1–30CrossRef Linkens D, Khelfa M (1992) Control strategies for nonlinear dynamics of muscle relaxant anaesthesia. Comput Methods Programs Biomed 37(1):1–30CrossRef
go back to reference Nirenberg S, Pandarinath C (2012) Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci 109(37):15,012–15,017 Nirenberg S, Pandarinath C (2012) Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci 109(37):15,012–15,017
go back to reference Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16(12):2533–2561CrossRefMATH Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16(12):2533–2561CrossRefMATH
go back to reference Pearson RK (1995) Nonlinear input/output modelling. J Process. Control 5(4):197–211 Pearson RK (1995) Nonlinear input/output modelling. J Process. Control 5(4):197–211
go back to reference Pearson RK (1999) Discrete-time dynamic models. Oxford University Press Pearson RK (1999) Discrete-time dynamic models. Oxford University Press
go back to reference Pillow JW, Simoncelli EP (2006) Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. J Vis 6(4):9CrossRef Pillow JW, Simoncelli EP (2006) Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. J Vis 6(4):9CrossRef
go back to reference Pisoni E, Farina M, Carnevale C, Piroddi L (2009) Forecasting peak air pollution levels using narx models. Eng Appl Artif Intell 22(4):593–602CrossRef Pisoni E, Farina M, Carnevale C, Piroddi L (2009) Forecasting peak air pollution levels using narx models. Eng Appl Artif Intell 22(4):593–602CrossRef
go back to reference Santos AAP, da Costa NCA, dos Santos Coelho L (2007) Computational intelligence approaches and linear models in case studies of forecasting exchange rates. Expert Syst Appl 33(4):816–823CrossRef Santos AAP, da Costa NCA, dos Santos Coelho L (2007) Computational intelligence approaches and linear models in case studies of forecasting exchange rates. Expert Syst Appl 33(4):816–823CrossRef
go back to reference Slee SJ, Higgs MH, Fairhall AL, Spain WJ (2005) Two-dimensional time coding in the auditory brainstem. J Neurosci 25(43):9978–9988CrossRef Slee SJ, Higgs MH, Fairhall AL, Spain WJ (2005) Two-dimensional time coding in the auditory brainstem. J Neurosci 25(43):9978–9988CrossRef
go back to reference Smith C (2008) Biology of sensory systems. Wiley Smith C (2008) Biology of sensory systems. Wiley
go back to reference Song Z, Postma M, Billings SA, Coca D, Hardie RC, Juusola M (2012) Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr Biol 22(15):1371–1380CrossRef Song Z, Postma M, Billings SA, Coca D, Hardie RC, Juusola M (2012) Stochastic, adaptive sampling of information by microvilli in fly photoreceptors. Curr Biol 22(15):1371–1380CrossRef
go back to reference Song Z, Coca D, Billings S, Postma M, Hardie RC, Juusola M (2009) Biophysical modeling of a drosophila photoreceptor. In: International conference on neural information processing. Springer, pp 57–71 Song Z, Coca D, Billings S, Postma M, Hardie RC, Juusola M (2009) Biophysical modeling of a drosophila photoreceptor. In: International conference on neural information processing. Springer, pp 57–71
go back to reference Thomson M, Schooling S, Soufian M (1996) The practical application of a nonlinear identification methodology. Control Eng Pract 4(3):295–306CrossRef Thomson M, Schooling S, Soufian M (1996) The practical application of a nonlinear identification methodology. Control Eng Pract 4(3):295–306CrossRef
go back to reference Trefethen LN, Bau III D (1997) Numerical linear algebra, vol 50. Siam Trefethen LN, Bau III D (1997) Numerical linear algebra, vol 50. Siam
go back to reference Volterra V (2005) Theory of functionals and of integral and integro-differential equations. Courier Corporation Volterra V (2005) Theory of functionals and of integral and integro-differential equations. Courier Corporation
go back to reference Wei HL, Zheng Y, Pan Y, Coca D, Li LM, Mayhew JE, Billings S et al (2009) Model estimation of cerebral hemodynamics between blood flow and volume changes: a data-based modeling approach. IEEE Trans Biomed Eng 56(6):1606–1616CrossRef Wei HL, Zheng Y, Pan Y, Coca D, Li LM, Mayhew JE, Billings S et al (2009) Model estimation of cerebral hemodynamics between blood flow and volume changes: a data-based modeling approach. IEEE Trans Biomed Eng 56(6):1606–1616CrossRef
go back to reference Wu MCK, David SV, Gallant JL (2006) Complete functional characterization of sensory neurons by system identification. Annu Rev Neurosci 29:477–505CrossRef Wu MCK, David SV, Gallant JL (2006) Complete functional characterization of sensory neurons by system identification. Annu Rev Neurosci 29:477–505CrossRef
go back to reference Zhang H, Billings S (1993) Analysing non-linear systems in the frequency domain-i. the transfer function. Mech Syst Signal Process 7(6):531–550CrossRef Zhang H, Billings S (1993) Analysing non-linear systems in the frequency domain-i. the transfer function. Mech Syst Signal Process 7(6):531–550CrossRef
go back to reference Zhu D, Balikhin M, Gedalin M, Alleyne H, Billings S, Hobara Y, Krasnosel’Skikh V, Dunlop M, Ruderman M (2008) Nonlinear dynamics of foreshock structures: application of nonlinear autoregressive moving average with exogenous inputs model to cluster data. J Geophys Res Space Phys (1978–2012) 113(A4) Zhu D, Balikhin M, Gedalin M, Alleyne H, Billings S, Hobara Y, Krasnosel’Skikh V, Dunlop M, Ruderman M (2008) Nonlinear dynamics of foreshock structures: application of nonlinear autoregressive moving average with exogenous inputs model to cluster data. J Geophys Res Space Phys (1978–2012) 113(A4)
Metadata
Title
A New Approach to the Identification of Sensory Processing Circuits Based on Spiking Neuron Data
Author
Dorian Florescu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57081-5_5