Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

A New Class of AI-based Engine Models

Authors : Valerian Cimniak, Dominik Rether, Sebastian Bodza, Michael Grill, Michael Bargende

Published in: Internationaler Motorenkongress 2021

Publisher: Springer Fachmedien Wiesbaden

An interesting field of application for neural networks is the mapping of system components in 100 to 1000-fold real-time while maintaining high quality. However, due to the limited extrapolation capability of neural networks, data for all possible operating states must be available during the training phase. Since the necessary amount of data cannot be generated by test bench experiments, fast, predictable and easily parallelizable simulation models must be used for this purpose. For example, the work process calculation in combination with phenomenological models can sufficiently represent the fundamental processes in the combustion chamber.This paper describes how a data set with almost 9.3 million different operating points of a gasoline engine is in the beginning generated using software tools available at the FKFS. Special characteristics of certain motor parameters regarding the network training are shown, as well as the reduction of the data set before the training to increase the network quality. In the following, the layout and training of a neural network is described, which predicts some combustion characteristics(mfb-10 %, mfb-25 %, mfb-50 %, mfb-75 % and mfb-90 % points), pressure characteristics (IMAP, peak pressure and its position as well as the pressure at exhaust opening) and NO emissions according to the data set.This is followed by a presentation of the statistical accuracy of the network and a detailed view of an exemplary map area. Finally, the integration of the network in GT-Suite and the coupling with FKFS RapidCylinder is shown and an exemplary load jump is considered. The paper thus represents a first proof-of-concept of how neural networks can be used in powertrain development.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Metadata
Title
A New Class of AI-based Engine Models
Authors
Valerian Cimniak
Dominik Rether
Sebastian Bodza
Michael Grill
Michael Bargende
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-658-35588-3_16

Premium Partner