Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2022

11-04-2022 | Technical Article

A New Constitutive Model for 7055 Aluminum Alloy

Authors: Yong Shao, Qihang Liu, Lin Yan, Jiahui Shi, Pingyi Guo, Shujin Chen

Published in: Journal of Materials Engineering and Performance | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hot deformation behavior of spray-formed 7055 aluminum alloy was investigated using a thermo-mechanical simulator by a series of isothermal and constant strain-rate compression tests. These tests were at deformation temperatures ranging from 653 to 713 K and strain rates ranging from 0.1 to 15s−1. The microstructure characteristics of these deformed samples were examined by optical microscope (OM) and electron back-scattered diffraction (EBSD) techniques. The material flow patterns and relevant microstructural analyses indicated that specific thermo-mechanical conditions including the Zener-Hollomon parameter, temperature, and strain, determined the onset and degree of obvious dynamic recrystallization (DRX) behavior. A partially recrystallized grain microstructure was observed and enhanced the flow softening especially at low Zener-Hollomon values. The influence of different hot deformation conditions on the material flow behavior and the evolution of microstructure was confirmed. A new three-stage constitutive equation, accompanied by a microstructure evolution model, was developed to predict the flow stress of sprayed-formed 7055 aluminum alloy and the corresponding characteristics of DRX transformation during the hot deformation process. The predicted performance was evaluated by experimental data and showed good accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.-Y. Yang, Z. Wang, L.-Y. Chen, S.-L. Shu, F. Qiu, and L.-C. Zhang, Interface Formation and Bonding Control in High-Volume-Fraction (TiC+ TiB2)/Al Composites and Their Roles in Enhancing Properties, Compos. Part B Eng., 2021, 209, p 108605.CrossRef H.-Y. Yang, Z. Wang, L.-Y. Chen, S.-L. Shu, F. Qiu, and L.-C. Zhang, Interface Formation and Bonding Control in High-Volume-Fraction (TiC+ TiB2)/Al Composites and Their Roles in Enhancing Properties, Compos. Part B Eng., 2021, 209, p 108605.CrossRef
2.
go back to reference B.-X. Dong, Q. Li, Z.-F. Wang, T.-S. Liu, H.-Y. Yang, S.-L. Shu, L.-Y. Chen, F. Qiu, Q.-C. Jiang, and L.-C. Zhang, Enhancing Strength-Ductility Synergy and Mechanisms of Al-Based Composites by Size-Tunable In-Situ TiB2 Particles with Specific Spatial Distribution, Compos. Part B Eng., 2021, 217, p 1089.CrossRef B.-X. Dong, Q. Li, Z.-F. Wang, T.-S. Liu, H.-Y. Yang, S.-L. Shu, L.-Y. Chen, F. Qiu, Q.-C. Jiang, and L.-C. Zhang, Enhancing Strength-Ductility Synergy and Mechanisms of Al-Based Composites by Size-Tunable In-Situ TiB2 Particles with Specific Spatial Distribution, Compos. Part B Eng., 2021, 217, p 1089.CrossRef
3.
go back to reference H.-Y. Yang, Z.-J. Cai, Q. Zhang, Y. Shao, B.-X. Dong, Q.-Q. Xuan, and F. Qiu, Comparison of the Effects of Mg and Zn on the Interface Mismatch and Compression Properties of 50 vol% TiB2/Al Composites, Ceram. Int., 2021, 47, p 22121–22129.CrossRef H.-Y. Yang, Z.-J. Cai, Q. Zhang, Y. Shao, B.-X. Dong, Q.-Q. Xuan, and F. Qiu, Comparison of the Effects of Mg and Zn on the Interface Mismatch and Compression Properties of 50 vol% TiB2/Al Composites, Ceram. Int., 2021, 47, p 22121–22129.CrossRef
4.
go back to reference H. Yang, X. Yue, Z. Wang, Y. Shao, and S. Shu, Strengthening Mechanism of TiC/Al Composites Using Al-Ti-C/CNTs with Doping Alloying Elements (Mg, Zn and Cu), J. Market. Res., 2020, 9, p 6475–6487. H. Yang, X. Yue, Z. Wang, Y. Shao, and S. Shu, Strengthening Mechanism of TiC/Al Composites Using Al-Ti-C/CNTs with Doping Alloying Elements (Mg, Zn and Cu), J. Market. Res., 2020, 9, p 6475–6487.
5.
go back to reference P.Y. Guo, H. Sun, Y. Shao, J.T. Ding, J.C. Li, M.R. Huang, S.Y. Mao, Y.X. Wang, J.F. Zhang, R.C. Long, and X.H. Hou, The Evolution of Microstructure and Electrical Performance in Doped Mn-Co and Cu-Mn Oxide Layers with the Extended Oxidation Time, Corros. Sci., 2020, 172, p 108738.CrossRef P.Y. Guo, H. Sun, Y. Shao, J.T. Ding, J.C. Li, M.R. Huang, S.Y. Mao, Y.X. Wang, J.F. Zhang, R.C. Long, and X.H. Hou, The Evolution of Microstructure and Electrical Performance in Doped Mn-Co and Cu-Mn Oxide Layers with the Extended Oxidation Time, Corros. Sci., 2020, 172, p 108738.CrossRef
6.
go back to reference K.K. Sankaran, and R.S. Mishra, Metallurgy and Design of Alloys with Hierarchical Microstructures, Elsevier Science, 2017. K.K. Sankaran, and R.S. Mishra, Metallurgy and Design of Alloys with Hierarchical Microstructures, Elsevier Science, 2017.
7.
go back to reference P.Y. Guo, B. Lu, and Y. Shao, Optimal Design for Preform of Blade Forging by Topological Algorithm Combined with Numerical Simulation and Physical Experiment, Rare Metal Mat. Eng., 2017, 46, p 461–467. P.Y. Guo, B. Lu, and Y. Shao, Optimal Design for Preform of Blade Forging by Topological Algorithm Combined with Numerical Simulation and Physical Experiment, Rare Metal Mat. Eng., 2017, 46, p 461–467.
8.
go back to reference J. Li, D. Feng, W. Xia, W. Guo, and G. Wang, The Non-Isothermal Double Ageing Behaviour of 7055 Aluminum Alloy, Acta Metall. Sin., 2020, 56(11), p 1495–1506. J. Li, D. Feng, W. Xia, W. Guo, and G. Wang, The Non-Isothermal Double Ageing Behaviour of 7055 Aluminum Alloy, Acta Metall. Sin., 2020, 56(11), p 1495–1506.
9.
go back to reference Y. Shao, J.T. Ding, P.Y. Guo, W.X. Ou, S.Y. Mao, M.R. Huang, Z. He, D.P. Wang, L.L. Yang, P.J. Zhou, and S.J. Chen, High Temperature Characteristics and Phase Compositions of Cu/Mn Multilayers with the Different Average Thickness Prepared by Electrodeposition, J. Alloys Compd., 2021, 871, p 1594.CrossRef Y. Shao, J.T. Ding, P.Y. Guo, W.X. Ou, S.Y. Mao, M.R. Huang, Z. He, D.P. Wang, L.L. Yang, P.J. Zhou, and S.J. Chen, High Temperature Characteristics and Phase Compositions of Cu/Mn Multilayers with the Different Average Thickness Prepared by Electrodeposition, J. Alloys Compd., 2021, 871, p 1594.CrossRef
10.
go back to reference A. Rollett, G.S. Rohrer, J. Humphreys, Recrystallization and Related Annealing Phenomena, Newnes, 2017. A. Rollett, G.S. Rohrer, J. Humphreys, Recrystallization and Related Annealing Phenomena, Newnes, 2017.
11.
go back to reference Y. Lin, and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759.CrossRef Y. Lin, and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759.CrossRef
12.
go back to reference J. Ren, R. Wang, Y. Feng, C. Peng, and Z. Cai, Hot Deformation Behavior and Microstructural Evolution of as-Quenched 7055 Al Alloy Fabricated by Powder Hot Extrusion, Mater. Charact., 2019, 156, p 109833.CrossRef J. Ren, R. Wang, Y. Feng, C. Peng, and Z. Cai, Hot Deformation Behavior and Microstructural Evolution of as-Quenched 7055 Al Alloy Fabricated by Powder Hot Extrusion, Mater. Charact., 2019, 156, p 109833.CrossRef
13.
go back to reference Y. Lin, Y.-J. Liang, M.-S. Chen, and X.-M. Chen, A Comparative Study on Phenomenon and Deep Belief Network Models for Hot Deformation Behavior of an Al–Zn–Mg–Cu Alloy, Appl. Phys. A, 2017, 123, p 1–11.CrossRef Y. Lin, Y.-J. Liang, M.-S. Chen, and X.-M. Chen, A Comparative Study on Phenomenon and Deep Belief Network Models for Hot Deformation Behavior of an Al–Zn–Mg–Cu Alloy, Appl. Phys. A, 2017, 123, p 1–11.CrossRef
14.
go back to reference X. Wang, Q. Pan, S. Xiong, and L. Liu, Prediction on Hot Deformation Behavior of Spray Formed Ultra-High Strength aluminum Alloy—A Comparative Study Using Constitutive Models, J. Alloy. Compd., 2018, 735, p 1931–1942.CrossRef X. Wang, Q. Pan, S. Xiong, and L. Liu, Prediction on Hot Deformation Behavior of Spray Formed Ultra-High Strength aluminum Alloy—A Comparative Study Using Constitutive Models, J. Alloy. Compd., 2018, 735, p 1931–1942.CrossRef
15.
go back to reference D.-N. Zhang, Q.-Q. Shangguan, C.-J. Xie, and F. Liu, A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075–T6 Aluminum Alloy, J. Alloy. Compd., 2015, 619, p 186–194.CrossRef D.-N. Zhang, Q.-Q. Shangguan, C.-J. Xie, and F. Liu, A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075–T6 Aluminum Alloy, J. Alloy. Compd., 2015, 619, p 186–194.CrossRef
16.
go back to reference R. Bobbili, V. Madhu, and A.K. Gogia, Tensile Behaviour of Aluminium 7017 Alloy at Various Temperatures and Strain Rates, J. Market. Res., 2016, 5, p 190–197. R. Bobbili, V. Madhu, and A.K. Gogia, Tensile Behaviour of Aluminium 7017 Alloy at Various Temperatures and Strain Rates, J. Market. Res., 2016, 5, p 190–197.
17.
go back to reference D. Feng, X.M. Zhang, S.D. Liu, and Y.L. Deng, Constitutive Equation and Hot Deformation Behavior of Homogenized Al–768Zn–212Mg–198Cu–012Zr Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2014, 608, p 63–72.CrossRef D. Feng, X.M. Zhang, S.D. Liu, and Y.L. Deng, Constitutive Equation and Hot Deformation Behavior of Homogenized Al–768Zn–212Mg–198Cu–012Zr Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2014, 608, p 63–72.CrossRef
18.
go back to reference C.-Q. Huang, J. Deng, S.-X. Wang, and L.-L. Liu, A Physical-Based Constitutive Model to Describe the Strain-Hardening and Dynamic Recovery Behaviors of 5754 Aluminum Alloy, Mater. Sci. Eng., A, 2017, 699, p 106–113.CrossRef C.-Q. Huang, J. Deng, S.-X. Wang, and L.-L. Liu, A Physical-Based Constitutive Model to Describe the Strain-Hardening and Dynamic Recovery Behaviors of 5754 Aluminum Alloy, Mater. Sci. Eng., A, 2017, 699, p 106–113.CrossRef
19.
go back to reference H. Hallberg, M. Wallin, and M. Ristinmaa, Modeling of Continuous Dynamic Recrystallization in Commercial-Purity Aluminum, Mater. Sci. Eng. A, 2010, 527, p 1126–1134.CrossRef H. Hallberg, M. Wallin, and M. Ristinmaa, Modeling of Continuous Dynamic Recrystallization in Commercial-Purity Aluminum, Mater. Sci. Eng. A, 2010, 527, p 1126–1134.CrossRef
20.
go back to reference M. Bacca, and R.M. McMeeking, Latent Heat Saturation in Microstructural Evolution by Severe Plastic Deformation, Int. J. Plast, 2016, 83, p 74–89.CrossRef M. Bacca, and R.M. McMeeking, Latent Heat Saturation in Microstructural Evolution by Severe Plastic Deformation, Int. J. Plast, 2016, 83, p 74–89.CrossRef
21.
go back to reference Z. Sun, H. Wu, J. Cao, and Z. Yin, Modeling of Continuous Dynamic Recrystallization of Al-Zn-Cu-Mg Alloy During Hot Deformation Based on the Internal-State-Variable (ISV) Method, Int. J. Plast, 2018, 106, p 73–87.CrossRef Z. Sun, H. Wu, J. Cao, and Z. Yin, Modeling of Continuous Dynamic Recrystallization of Al-Zn-Cu-Mg Alloy During Hot Deformation Based on the Internal-State-Variable (ISV) Method, Int. J. Plast, 2018, 106, p 73–87.CrossRef
22.
go back to reference S. Gourdet, and F. Montheillet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51, p 2685–2699.CrossRef S. Gourdet, and F. Montheillet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51, p 2685–2699.CrossRef
23.
go back to reference J. Zhang, Z. Li, K. Wen, S. Huang, X. Li, H. Yan, L. Yan, H. Liu, Y. Zhang, and B. Xiong, Simulation of Dynamic Recrystallization for an Al-Zn-Mg-Cu Alloy Using Cellular Automaton, Progr. Nat. Sci. Mater. Int., 2019, 29, p 477–484.CrossRef J. Zhang, Z. Li, K. Wen, S. Huang, X. Li, H. Yan, L. Yan, H. Liu, Y. Zhang, and B. Xiong, Simulation of Dynamic Recrystallization for an Al-Zn-Mg-Cu Alloy Using Cellular Automaton, Progr. Nat. Sci. Mater. Int., 2019, 29, p 477–484.CrossRef
24.
go back to reference A. Eivani, H. Vafaeenezhad, O. Nikan, and J. Zhou, Modeling High Temperature Deformation Characteristics of AA7020 Aluminum Alloy Using Substructure-Based Constitutive Equations and Mesh-Free Approximation Method, Mech. Mater., 2019, 129, p 104–112.CrossRef A. Eivani, H. Vafaeenezhad, O. Nikan, and J. Zhou, Modeling High Temperature Deformation Characteristics of AA7020 Aluminum Alloy Using Substructure-Based Constitutive Equations and Mesh-Free Approximation Method, Mech. Mater., 2019, 129, p 104–112.CrossRef
25.
go back to reference S. Ding, S.A. Khan, and J. Yanagimoto, Flow Behavior and Dynamic Recrystallization Mechanism of A5083 Aluminum Alloys with Different Initial Microstructures During Hot Compression, Mater. Sci. Eng. A, 2020, 787, p 13952.CrossRef S. Ding, S.A. Khan, and J. Yanagimoto, Flow Behavior and Dynamic Recrystallization Mechanism of A5083 Aluminum Alloys with Different Initial Microstructures During Hot Compression, Mater. Sci. Eng. A, 2020, 787, p 13952.CrossRef
26.
go back to reference Q. Yang, Z. Deng, Z. Zhang, Q. Liu, Z. Jia, and G. Huang, Effects of Strain Rate on Flow Stress Behavior and Dynamic Recrystallization Mechanism of Al-Zn-Mg-Cu Aluminum Alloy during Hot Deformation, Mater. Sci. Eng. A, 2016, 662, p 204–213.CrossRef Q. Yang, Z. Deng, Z. Zhang, Q. Liu, Z. Jia, and G. Huang, Effects of Strain Rate on Flow Stress Behavior and Dynamic Recrystallization Mechanism of Al-Zn-Mg-Cu Aluminum Alloy during Hot Deformation, Mater. Sci. Eng. A, 2016, 662, p 204–213.CrossRef
27.
go back to reference M. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344.CrossRef M. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344.CrossRef
28.
go back to reference R. Doherty, D. Hughes, F. Humphreys, J.J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen and A. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274.CrossRef R. Doherty, D. Hughes, F. Humphreys, J.J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen and A. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274.CrossRef
29.
go back to reference S. Ding, S.A. Khan, and J. Yanagimoto, Constitutive Descriptions and Microstructure Evolution of Extruded A5083 Aluminum Alloy During Hot Compression, Mater. Sci. Eng., A, 2018, 728, p 133–143.CrossRef S. Ding, S.A. Khan, and J. Yanagimoto, Constitutive Descriptions and Microstructure Evolution of Extruded A5083 Aluminum Alloy During Hot Compression, Mater. Sci. Eng., A, 2018, 728, p 133–143.CrossRef
30.
go back to reference S. Yong, Z. Pengfei, L. Qihang, G. Pingyi, S. Fengjian, Y. Hongyu, Y. Lin, and Y. Na, Microstructure and Tensile Property Inhomogeneity of Commercial 7055–T7951 Aluminum Alloy Thick Plate by Hot Rolling, Rare Metal Mat. Eng., 2020, 49, p 4199–4206. S. Yong, Z. Pengfei, L. Qihang, G. Pingyi, S. Fengjian, Y. Hongyu, Y. Lin, and Y. Na, Microstructure and Tensile Property Inhomogeneity of Commercial 7055–T7951 Aluminum Alloy Thick Plate by Hot Rolling, Rare Metal Mat. Eng., 2020, 49, p 4199–4206.
31.
go back to reference H. Yu, M. Wang, X. Sheng, Z. Li, L. Chen, Q. Lei, C. Chen, Y. Jia, Z. Xiao, W. Chen, H. Wei, H. Zhang, X. Fan, and Y. Wang, Microstructure and Tensile Properties of Large-Size 7055 Aluminum Billets Fabricated by Spray Forming Rapid Solidification Technology, J. Alloy. Compd., 2013, 578, p 208–214.CrossRef H. Yu, M. Wang, X. Sheng, Z. Li, L. Chen, Q. Lei, C. Chen, Y. Jia, Z. Xiao, W. Chen, H. Wei, H. Zhang, X. Fan, and Y. Wang, Microstructure and Tensile Properties of Large-Size 7055 Aluminum Billets Fabricated by Spray Forming Rapid Solidification Technology, J. Alloy. Compd., 2013, 578, p 208–214.CrossRef
32.
go back to reference A. Chamanfar, M.T. Alamoudi, N.E. Nanninga, and W.Z. Misiolek, Analysis of Flow Stress and Microstructure During Hot Compression of 6099 Aluminum Alloy (AA6099), Mater. Sci. Eng. A, 2019, 743, p 684–696.CrossRef A. Chamanfar, M.T. Alamoudi, N.E. Nanninga, and W.Z. Misiolek, Analysis of Flow Stress and Microstructure During Hot Compression of 6099 Aluminum Alloy (AA6099), Mater. Sci. Eng. A, 2019, 743, p 684–696.CrossRef
33.
go back to reference J. Castellanos, I. Rieiro, M. Carsí, J. Muñoz, M. El Mehtedi, and O.A. Ruano, Analysis of Adiabatic Heating and its Influence on the Garofalo Equation Parameters of a High Nitrogen Steel, Mater. Sci. Eng. A, 2009, 517, p 191–196.CrossRef J. Castellanos, I. Rieiro, M. Carsí, J. Muñoz, M. El Mehtedi, and O.A. Ruano, Analysis of Adiabatic Heating and its Influence on the Garofalo Equation Parameters of a High Nitrogen Steel, Mater. Sci. Eng. A, 2009, 517, p 191–196.CrossRef
34.
go back to reference U. Kocks, and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater Sci., 2003, 48, p 171–273.CrossRef U. Kocks, and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater Sci., 2003, 48, p 171–273.CrossRef
35.
go back to reference A. Laasraoui, and J. Jonas, Recrystallization of Austenite After Deformation at High Temperatures and Strain Rates—Analysis and Modeling, Metall. Trans. A, 1991, 22, p 151–160.CrossRef A. Laasraoui, and J. Jonas, Recrystallization of Austenite After Deformation at High Temperatures and Strain Rates—Analysis and Modeling, Metall. Trans. A, 1991, 22, p 151–160.CrossRef
36.
go back to reference H.J. McQueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, London, 2011. H.J. McQueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, London, 2011.
37.
go back to reference Y. Deng, Z. Yin, and J. Huang, Hot Deformation Behavior and Microstructural Evolution of Homogenized 7050 Aluminum alloy During Compression at Elevated Temperature, Mater. Sci. Eng., A, 2011, 528, p 1780–1786.CrossRef Y. Deng, Z. Yin, and J. Huang, Hot Deformation Behavior and Microstructural Evolution of Homogenized 7050 Aluminum alloy During Compression at Elevated Temperature, Mater. Sci. Eng., A, 2011, 528, p 1780–1786.CrossRef
38.
go back to reference A. Najafizadeh, and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684.CrossRef A. Najafizadeh, and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684.CrossRef
39.
go back to reference H. Mirzadeh, and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31, p 1174–1179.CrossRef H. Mirzadeh, and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31, p 1174–1179.CrossRef
40.
go back to reference A. Momeni, G. Ebrahimi, M. Jahazi, and P. Bocher, Microstructure Evolution at the Onset of Discontinuous Dynamic Recrystallization: A Physics-Based Model of Subgrain Critical Size, J. Alloy. Compd., 2014, 587, p 199–210.CrossRef A. Momeni, G. Ebrahimi, M. Jahazi, and P. Bocher, Microstructure Evolution at the Onset of Discontinuous Dynamic Recrystallization: A Physics-Based Model of Subgrain Critical Size, J. Alloy. Compd., 2014, 587, p 199–210.CrossRef
41.
go back to reference S.W. Cheong, and H. Weiland, Understanding a Microstructure Using GOS (Grain Orientation Spread) and its Application to Recrystallization Study of Hot Deformed Al-Cu-Mg Alloys, Mater. Sci. Forum, 2007, 558, p 153–158.CrossRef S.W. Cheong, and H. Weiland, Understanding a Microstructure Using GOS (Grain Orientation Spread) and its Application to Recrystallization Study of Hot Deformed Al-Cu-Mg Alloys, Mater. Sci. Forum, 2007, 558, p 153–158.CrossRef
42.
go back to reference G. Meng, B. Li, H. Li, H. Huang, and Z. Nie, Hot Deformation and Processing Maps of an Al–57 wt% Mg Alloy with Erbium, Mater. Sci. Eng. A, 2009, 517, p 132–137.CrossRef G. Meng, B. Li, H. Li, H. Huang, and Z. Nie, Hot Deformation and Processing Maps of an Al–57 wt% Mg Alloy with Erbium, Mater. Sci. Eng. A, 2009, 517, p 132–137.CrossRef
43.
go back to reference Y.C. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, and L.-T. Li, EBSD study of a Hot Deformed Nickel-Based Superalloy, J. Alloy. Compd., 2015, 640, p 101–113.CrossRef Y.C. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, and L.-T. Li, EBSD study of a Hot Deformed Nickel-Based Superalloy, J. Alloy. Compd., 2015, 640, p 101–113.CrossRef
44.
go back to reference X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577.CrossRef X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577.CrossRef
45.
go back to reference T.J. Ballard, J.G. Speer, K.O. Findley, and E. De Moor, Double Twist Torsion Testing to Determine the Non Recrystallization Temperature, Sci. Rep., 2021, 11, p 1–19.CrossRef T.J. Ballard, J.G. Speer, K.O. Findley, and E. De Moor, Double Twist Torsion Testing to Determine the Non Recrystallization Temperature, Sci. Rep., 2021, 11, p 1–19.CrossRef
46.
go back to reference A. Hadadzadeh, F. Mokdad, M. Wells, and D. Chen, A New Grain Orientation Spread Approach to Analyze the Dynamic Recrystallization Behavior of a Cast-Homogenized Mg-Zn-Zr Alloy Using Electron Backscattered Diffraction, Mater. Sci. Eng., A, 2018, 709, p 285–289.CrossRef A. Hadadzadeh, F. Mokdad, M. Wells, and D. Chen, A New Grain Orientation Spread Approach to Analyze the Dynamic Recrystallization Behavior of a Cast-Homogenized Mg-Zn-Zr Alloy Using Electron Backscattered Diffraction, Mater. Sci. Eng., A, 2018, 709, p 285–289.CrossRef
47.
go back to reference B. Aashranth, D. Samantaray, M.A. Davinci, S. Murugesan, U. Borah, S.K. Albert, and A. Bhaduri, A Micro-Mechanism to Explain the Post-DRX Grain Growth at Temperatures> 0.8 Tm, Mater. Charact., 2018, 136, p 100–110.CrossRef B. Aashranth, D. Samantaray, M.A. Davinci, S. Murugesan, U. Borah, S.K. Albert, and A. Bhaduri, A Micro-Mechanism to Explain the Post-DRX Grain Growth at Temperatures> 0.8 Tm, Mater. Charact., 2018, 136, p 100–110.CrossRef
Metadata
Title
A New Constitutive Model for 7055 Aluminum Alloy
Authors
Yong Shao
Qihang Liu
Lin Yan
Jiahui Shi
Pingyi Guo
Shujin Chen
Publication date
11-04-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06869-3

Other articles of this Issue 10/2022

Journal of Materials Engineering and Performance 10/2022 Go to the issue

Premium Partners