Skip to main content
Top
Published in: Journal of Materials Science 18/2021

15-03-2021 | Energy materials

A new environmentally friendly gel polymer electrolyte based on cotton-PVA composited membrane for alkaline supercapacitors with increased operating voltage

Authors: Zhixing Zhao, Yun Huang, Feng Qiu, Wenhao Ren, Chao Zou, Xing Li, Mingshan Wang, Yuanhua Lin

Published in: Journal of Materials Science | Issue 18/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel aqueous alkaline gel polymer electrolyte (GPE) was obtained by combining cotton with PVA, offering a wide operating electrochemical window (1.6 V) for aqueous supercapacitors (SCs). The effects achieved can be explained that the free water is limited inside GPE by strong hydrogen bonds, and hydrate cations and hydrate anions change into small free ions, so the obtained GPE appears improved electrochemical stability. The synthesized cotton/PVA-based membrane with weight ratio of 8:1(C/PCA-8-1) possesses high porosity (55%), liquid electrolyte uptake (771.43 wt%) and superior ionic conductivity (28 mS cm−1). The SC based on cotton and PVA with weight ratio of 8:5(C/PVA-8-5) soaking in KOH solution, owing to the best electrochemical performance, with the specific capacitance up to 160 F g−1 at 0.5 A g−1, and a higher specific energy of 11.8 Wh kg−1. The flexible SCs based on cotton/PVA GPE can be bent to 180° easily and still have good electrochemical performance. These results indicate that this kind of GPE can apply to wearable energy storage devices.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zhong C, Deng YD, Hu WB et al (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539CrossRef Zhong C, Deng YD, Hu WB et al (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539CrossRef
2.
go back to reference Fic K, Lota G, Meller M et al (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842–5850CrossRef Fic K, Lota G, Meller M et al (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842–5850CrossRef
3.
go back to reference Meng Y, Zhao Y, Hu C et al (2013) All-Graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25:2326–2331CrossRef Meng Y, Zhao Y, Hu C et al (2013) All-Graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25:2326–2331CrossRef
4.
go back to reference Yang Y, Huang Q, Niu L et al (2017) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29:1606679–1606688CrossRef Yang Y, Huang Q, Niu L et al (2017) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29:1606679–1606688CrossRef
5.
go back to reference Yu M, Lu Y, Zheng H et al (2018) New insights into the operating voltage of aqueous supercapacitors. Chem Eur J 24:3639–3649CrossRef Yu M, Lu Y, Zheng H et al (2018) New insights into the operating voltage of aqueous supercapacitors. Chem Eur J 24:3639–3649CrossRef
6.
go back to reference Yang C-C, Hsu S-T, Chien W-C (2005) All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes. J Power Sour 152:303–310CrossRef Yang C-C, Hsu S-T, Chien W-C (2005) All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes. J Power Sour 152:303–310CrossRef
7.
go back to reference Qiu ZP, Wang YS, Bi X et al (2018) Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J Power Sour 376:82–90CrossRef Qiu ZP, Wang YS, Bi X et al (2018) Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J Power Sour 376:82–90CrossRef
8.
go back to reference Soserov L, Boyadzhieva T, Koleva V et al (2017) Effect of the electrolyte alkaline ions on the electrochemical performance of alpha-Ni(OH)(2)/Activated carbon composites in the hybrid supercapacitor cell. ChemistrySelect 2:6693–6698CrossRef Soserov L, Boyadzhieva T, Koleva V et al (2017) Effect of the electrolyte alkaline ions on the electrochemical performance of alpha-Ni(OH)(2)/Activated carbon composites in the hybrid supercapacitor cell. ChemistrySelect 2:6693–6698CrossRef
9.
go back to reference Li CY, Wu WZ, Wang P et al (2019) Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2 V by using an alkaline-acidic electrolyte. Adv Sci 6:1801665–1801673CrossRef Li CY, Wu WZ, Wang P et al (2019) Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2 V by using an alkaline-acidic electrolyte. Adv Sci 6:1801665–1801673CrossRef
10.
go back to reference Wan F, Zhu J, Huang S et al (2020) High-voltage electrolytes for aqueous energy storage devices. Batter Supercaps 3:323–330CrossRef Wan F, Zhu J, Huang S et al (2020) High-voltage electrolytes for aqueous energy storage devices. Batter Supercaps 3:323–330CrossRef
11.
go back to reference Zhai ZB, Huang KJ, Wu X (2018) Superior mixed Co–Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47:89–95CrossRef Zhai ZB, Huang KJ, Wu X (2018) Superior mixed Co–Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47:89–95CrossRef
12.
go back to reference Nie YF, Wang Q, Chen XY et al (2016) Synergistic effect of novel redox additives of p-nitroaniline and dimethylglyoxime for highly improving the supercapacitor performances. Phys Chem Chem Phys 18:2718–2729CrossRef Nie YF, Wang Q, Chen XY et al (2016) Synergistic effect of novel redox additives of p-nitroaniline and dimethylglyoxime for highly improving the supercapacitor performances. Phys Chem Chem Phys 18:2718–2729CrossRef
13.
go back to reference Ye BR, Gong C, Huang ML et al (2018) Improved performance of a CoTe//AC asymmetric supercapacitor using a redox additive aqueous electrolyte. RSC Adv 8:7997–8006CrossRef Ye BR, Gong C, Huang ML et al (2018) Improved performance of a CoTe//AC asymmetric supercapacitor using a redox additive aqueous electrolyte. RSC Adv 8:7997–8006CrossRef
14.
go back to reference Zhang MC, Fan HQ, Gao Y et al (2020) Preaddition of cations to electrolytes for aqueous 2.2 V High voltage hybrid supercapacitor with superlong cycling life and its energy storage mechanism. ACS Appl Mater Interfaces 12:17659–17668CrossRef Zhang MC, Fan HQ, Gao Y et al (2020) Preaddition of cations to electrolytes for aqueous 2.2 V High voltage hybrid supercapacitor with superlong cycling life and its energy storage mechanism. ACS Appl Mater Interfaces 12:17659–17668CrossRef
15.
go back to reference Nayak PK, Munichandraiah N (2008) Cobalt hydroxide as a capacitor material: tuning its potential window. J Electrochem Soc 155:A855–A861CrossRef Nayak PK, Munichandraiah N (2008) Cobalt hydroxide as a capacitor material: tuning its potential window. J Electrochem Soc 155:A855–A861CrossRef
16.
go back to reference Zang XN, Shen CW, Sanghadasa M et al (2019) High-voltage supercapacitors based on aqueous electrolytes. ChemElectroChem 6:976–988CrossRef Zang XN, Shen CW, Sanghadasa M et al (2019) High-voltage supercapacitors based on aqueous electrolytes. ChemElectroChem 6:976–988CrossRef
17.
go back to reference Li CY, Wu WZ, Zhang SS et al (2019) A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline-neutral electrolyte. J Mater Chem A 7:4110–4118CrossRef Li CY, Wu WZ, Zhang SS et al (2019) A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline-neutral electrolyte. J Mater Chem A 7:4110–4118CrossRef
18.
go back to reference He M, Fic K, Fra E, Novák P, Berg EJ (2016) Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ Sci 9(2):623–633CrossRef He M, Fic K, Fra E, Novák P, Berg EJ (2016) Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ Sci 9(2):623–633CrossRef
19.
go back to reference Tomiyasu H, Shikata H, Takao K et al (2017) An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci Rep 7:45048–45060CrossRef Tomiyasu H, Shikata H, Takao K et al (2017) An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci Rep 7:45048–45060CrossRef
20.
go back to reference Boucher JL (1989) Advanced Inorganic Chemistry, 5th Edition (Cotton, Albert F.; Wilkinson, Geoffrey). Journal of Chemical Education, 66:A104 Boucher JL (1989) Advanced Inorganic Chemistry, 5th Edition (Cotton, Albert F.; Wilkinson, Geoffrey). Journal of Chemical Education, 66:A104
21.
go back to reference Ngai KS, Ramesh S, Ramesh K et al (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279CrossRef Ngai KS, Ramesh S, Ramesh K et al (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22:1259–1279CrossRef
22.
go back to reference Zhai SX, Jin KL, Zhou M et al (2020) A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere. Coll Surf A 584:124025–124035CrossRef Zhai SX, Jin KL, Zhou M et al (2020) A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere. Coll Surf A 584:124025–124035CrossRef
23.
go back to reference Zhao D, Zhu Y, Cheng W et al (2020) A dynamic gel with reversible and tunable topological networks and performances. Matter 2:390–403CrossRef Zhao D, Zhu Y, Cheng W et al (2020) A dynamic gel with reversible and tunable topological networks and performances. Matter 2:390–403CrossRef
24.
go back to reference Qiu F, Huang Y, Hu X et al (2019) An ecofriendly gel polymer electrolyte based on natural lignocellulose with ultrahigh electrolyte uptake and excellent ionic conductivity for alkaline supercapacitors. ACS Appl Energy Mater 2:6031–6042CrossRef Qiu F, Huang Y, Hu X et al (2019) An ecofriendly gel polymer electrolyte based on natural lignocellulose with ultrahigh electrolyte uptake and excellent ionic conductivity for alkaline supercapacitors. ACS Appl Energy Mater 2:6031–6042CrossRef
25.
go back to reference Qiu F, Huang Y, He G et al (2020) A lignocellulose-based neutral hydrogel electrolyte for high-voltage supercapacitors with overlong cyclic stability. Electrochim Acta 363:137241–137251CrossRef Qiu F, Huang Y, He G et al (2020) A lignocellulose-based neutral hydrogel electrolyte for high-voltage supercapacitors with overlong cyclic stability. Electrochim Acta 363:137241–137251CrossRef
26.
go back to reference Qiu F, Huang Y, Luo C et al (2020) An acid-resistant gel polymer electrolyte based on lignocellulose of natural biomass for supercapacitors. Energy Technol 8:1–12CrossRef Qiu F, Huang Y, Luo C et al (2020) An acid-resistant gel polymer electrolyte based on lignocellulose of natural biomass for supercapacitors. Energy Technol 8:1–12CrossRef
27.
go back to reference Hideno A, Abe K, Uchimura H et al (2016) Preparation by combined enzymatic and mechanical treatment and characterization of nanofibrillated cotton fibers. Cellulose 23:3639–3651CrossRef Hideno A, Abe K, Uchimura H et al (2016) Preparation by combined enzymatic and mechanical treatment and characterization of nanofibrillated cotton fibers. Cellulose 23:3639–3651CrossRef
28.
go back to reference Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev MMBR 66:506–577CrossRef Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev MMBR 66:506–577CrossRef
29.
go back to reference Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497CrossRef Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497CrossRef
30.
go back to reference Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167CrossRef Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167CrossRef
31.
go back to reference Withers SG (2001) Mechanisms of glycosyl transferases and hydrolases. Carbohydr Polym 44:325–337CrossRef Withers SG (2001) Mechanisms of glycosyl transferases and hydrolases. Carbohydr Polym 44:325–337CrossRef
32.
go back to reference Davies GJ, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859CrossRef Davies GJ, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859CrossRef
33.
go back to reference Suo L, Borodin O, Wang Y et al (2017) “Water-in-Salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv Energy Mater 7:1701189–1701198CrossRef Suo L, Borodin O, Wang Y et al (2017) “Water-in-Salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv Energy Mater 7:1701189–1701198CrossRef
34.
go back to reference Xiao W, Zhao L, Gong Y et al (2015) Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries. J Membr Sci 487:221–228CrossRef Xiao W, Zhao L, Gong Y et al (2015) Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries. J Membr Sci 487:221–228CrossRef
35.
go back to reference Mansur HS, Sadahira CM, Souza AN et al (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng, C 28:539–548CrossRef Mansur HS, Sadahira CM, Souza AN et al (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng, C 28:539–548CrossRef
36.
go back to reference Pawde SM, Deshmukh K, Parab S (2008) Preparation and characterization of poly(vinyl alcohol) and gelatin blend films. J Appl Polym Sci 109:1328–1337CrossRef Pawde SM, Deshmukh K, Parab S (2008) Preparation and characterization of poly(vinyl alcohol) and gelatin blend films. J Appl Polym Sci 109:1328–1337CrossRef
37.
go back to reference Mcgraw R, Madden WG, Bergren MS et al (1978) A theoretical study of the OH stretching region of the vibrational spectrum of ice Ih. J Chem Phys 69:3483–3497CrossRef Mcgraw R, Madden WG, Bergren MS et al (1978) A theoretical study of the OH stretching region of the vibrational spectrum of ice Ih. J Chem Phys 69:3483–3497CrossRef
38.
go back to reference Deng XH, Huang Y, Song AM et al (2019) Gel polymer electrolyte with high performances based on biodegradable polymer polyvinyl alcohol composite lignocellulose. Mater Chem Phys 229:232–241CrossRef Deng XH, Huang Y, Song AM et al (2019) Gel polymer electrolyte with high performances based on biodegradable polymer polyvinyl alcohol composite lignocellulose. Mater Chem Phys 229:232–241CrossRef
39.
go back to reference Assender HE, Windle AH (1998) Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 39(18):4295–4302CrossRef Assender HE, Windle AH (1998) Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 39(18):4295–4302CrossRef
40.
go back to reference Jordan JH, Easson MW, Dien B et al (2019) Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose 26:5959–5979CrossRef Jordan JH, Easson MW, Dien B et al (2019) Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose 26:5959–5979CrossRef
41.
go back to reference Wang J, Li Y, Wang Z et al (2016) Influence of pretreatment on properties of cotton fiber in aqueous NaOH/urea solution. Cellulose 23:2173–2183CrossRef Wang J, Li Y, Wang Z et al (2016) Influence of pretreatment on properties of cotton fiber in aqueous NaOH/urea solution. Cellulose 23:2173–2183CrossRef
42.
go back to reference Liu C, Yan X, Hu F et al (2018) Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv Mater 30:1705713–1705736CrossRef Liu C, Yan X, Hu F et al (2018) Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv Mater 30:1705713–1705736CrossRef
43.
go back to reference Toney MF, Howard JN, Richer J et al (1994) Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368:444–446CrossRef Toney MF, Howard JN, Richer J et al (1994) Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368:444–446CrossRef
44.
go back to reference Xie L-J, Sun G-H, Xie L-F et al (2016) A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon. New Carbon Mater 31:37–45CrossRef Xie L-J, Sun G-H, Xie L-F et al (2016) A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon. New Carbon Mater 31:37–45CrossRef
45.
go back to reference Chen Y, Chen GZ (2020) New precursors derived activated carbon and graphene for aqueous supercapacitors with unequal electrode capacitances. Acta Phys Chim Sin 36:1904025–1904043CrossRef Chen Y, Chen GZ (2020) New precursors derived activated carbon and graphene for aqueous supercapacitors with unequal electrode capacitances. Acta Phys Chim Sin 36:1904025–1904043CrossRef
46.
go back to reference Tu Q-M, Fan L-Q, Pan F et al (2018) Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochim Acta 268:562–568CrossRef Tu Q-M, Fan L-Q, Pan F et al (2018) Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochim Acta 268:562–568CrossRef
47.
go back to reference Mao BS, Wen Z, Bo Z et al (2014) Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors. ACS Appl Mater Interfaces 6:9881–9889CrossRef Mao BS, Wen Z, Bo Z et al (2014) Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors. ACS Appl Mater Interfaces 6:9881–9889CrossRef
48.
go back to reference Wada H, Nohara S, Furukawa N et al (2004) Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte. Electrochim Acta 49:4871–4875CrossRef Wada H, Nohara S, Furukawa N et al (2004) Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte. Electrochim Acta 49:4871–4875CrossRef
49.
go back to reference Luan F, Wang G, Ling Y et al (2013) High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5:7984–7990CrossRef Luan F, Wang G, Ling Y et al (2013) High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5:7984–7990CrossRef
50.
go back to reference Kolathodi M, Palei M, Natarajan T (2015) Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J Mater Chem A 3:7513–7522CrossRef Kolathodi M, Palei M, Natarajan T (2015) Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J Mater Chem A 3:7513–7522CrossRef
51.
go back to reference Choi BG, Chang SJ, Kang HW et al (2012) High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 4:4983–4988CrossRef Choi BG, Chang SJ, Kang HW et al (2012) High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 4:4983–4988CrossRef
52.
go back to reference Dubal DP, Chodankar NR, Kim DH et al (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129CrossRef Dubal DP, Chodankar NR, Kim DH et al (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129CrossRef
53.
go back to reference Rong QF, Lei WW, Huang J et al (2018) Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater 8:1614–6832CrossRef Rong QF, Lei WW, Huang J et al (2018) Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater 8:1614–6832CrossRef
54.
go back to reference Zhao C, Wang CY, Yue ZL et al (2013) Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte. ACS Appl Mater Interfaces 5:9008–9014CrossRef Zhao C, Wang CY, Yue ZL et al (2013) Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte. ACS Appl Mater Interfaces 5:9008–9014CrossRef
Metadata
Title
A new environmentally friendly gel polymer electrolyte based on cotton-PVA composited membrane for alkaline supercapacitors with increased operating voltage
Authors
Zhixing Zhao
Yun Huang
Feng Qiu
Wenhao Ren
Chao Zou
Xing Li
Mingshan Wang
Yuanhua Lin
Publication date
15-03-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05987-y

Other articles of this Issue 18/2021

Journal of Materials Science 18/2021 Go to the issue

Premium Partners