Skip to main content
Top
Published in: Computational Mechanics 1/2017

14-03-2017 | Original Paper

A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations

Authors: Y. Bazilevs, G. Moutsanidis, J. Bueno, K. Kamran, D. Kamensky, M. C. Hillman, H. Gomez, J. S. Chen

Published in: Computational Mechanics | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this two-part paper we begin the development of a new class of methods for modeling fluid–structure interaction (FSI) phenomena for air blast. We aim to develop accurate, robust, and practical computational methodology, which is capable of modeling the dynamics of air blast coupled with the structure response, where the latter involves large, inelastic deformations and disintegration into fragments. An immersed approach is adopted, which leads to an a-priori monolithic FSI formulation with intrinsic contact detection between solid objects, and without formal restrictions on the solid motions. In Part I of this paper, the core air-blast FSI methodology suitable for a variety of discretizations is presented and tested using standard finite elements. Part II of this paper focuses on a particular instantiation of the proposed framework, which couples isogeometric analysis (IGA) based on non-uniform rational B-splines and a reproducing-kernel particle method (RKPM), which is a meshfree technique. The combination of IGA and RKPM is felt to be particularly attractive for the problem class of interest due to the higher-order accuracy and smoothness of both discretizations, and relative simplicity of RKPM in handling fragmentation scenarios. A collection of mostly 2D numerical examples is presented in each of the parts to illustrate the good performance of the proposed air-blast FSI framework.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH
2.
go back to reference Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Toward integration of CAD and FEA. Wiley, New YorkCrossRef Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Toward integration of CAD and FEA. Wiley, New YorkCrossRef
3.
go back to reference Farin GE (1999) NURBS: from projective geometry to practical use. AK Peters Ltd, NatickMATH Farin GE (1999) NURBS: from projective geometry to practical use. AK Peters Ltd, NatickMATH
4.
5.
go back to reference Rogers DF (2000) An introduction to NURBS: with historical perspective. Elsevier, Amsterdam Rogers DF (2000) An introduction to NURBS: with historical perspective. Elsevier, Amsterdam
6.
go back to reference Chen JS, Belytschko T (2015) Meshless and meshfree methods. In: Encyclopedia of applied and computational mathematics. Springer, Berlin, pp 886–894 Chen JS, Belytschko T (2015) Meshless and meshfree methods. In: Encyclopedia of applied and computational mathematics. Springer, Berlin, pp 886–894
8.
go back to reference Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetCrossRefMATH Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetCrossRefMATH
9.
go back to reference Chen JS, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1):195–227MathSciNetCrossRefMATH Chen JS, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1):195–227MathSciNetCrossRefMATH
10.
go back to reference Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetCrossRefMATH Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetCrossRefMATH
11.
go back to reference Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195(41):5257–5296MathSciNetCrossRefMATH Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195(41):5257–5296MathSciNetCrossRefMATH
12.
go back to reference Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199:357–373CrossRefMATH Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199:357–373CrossRefMATH
13.
go back to reference Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5(6):477–495 Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5(6):477–495
14.
go back to reference Bazilevs Y, Beirao da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16(07):1031–1090MathSciNetCrossRefMATH Bazilevs Y, Beirao da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16(07):1031–1090MathSciNetCrossRefMATH
15.
go back to reference Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRef Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRef
16.
go back to reference Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322MathSciNetCrossRefMATH Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322MathSciNetCrossRefMATH
17.
go back to reference Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetCrossRefMATH Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetCrossRefMATH
18.
go back to reference Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5):276–289MathSciNetCrossRefMATH Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5):276–289MathSciNetCrossRefMATH
21.
go back to reference Beirao da Veiga L, Cho D, Sangalli G (2012) Anisotropic NURBS approximation in isogeometric analysis. Comput Methods Appl Mech Eng 209–212:1–11MathSciNetCrossRefMATH Beirao da Veiga L, Cho D, Sangalli G (2012) Anisotropic NURBS approximation in isogeometric analysis. Comput Methods Appl Mech Eng 209–212:1–11MathSciNetCrossRefMATH
22.
go back to reference Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199:301–313MathSciNetCrossRefMATH Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199:301–313MathSciNetCrossRefMATH
23.
go back to reference Auricchio F, Calabrò F, Hughes TJR, Reali A, Sangalli G (2012) A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 249–252:15–27MathSciNetCrossRefMATH Auricchio F, Calabrò F, Hughes TJR, Reali A, Sangalli G (2012) A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 249–252:15–27MathSciNetCrossRefMATH
24.
go back to reference Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36:9–15MathSciNetCrossRefMATH Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36:9–15MathSciNetCrossRefMATH
25.
go back to reference Chen JS, Liu WK, Hillman M, Chi SW, Lian Y, Bessa MA (2016) Reproducing kernel approximation and discretization. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, 2nd edn. Wiley, New York (in press) Chen JS, Liu WK, Hillman M, Chi SW, Lian Y, Bessa MA (2016) Reproducing kernel approximation and discretization. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, 2nd edn. Wiley, New York (in press)
26.
go back to reference Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I): methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154MathSciNetCrossRefMATH Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I): methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154MathSciNetCrossRefMATH
27.
go back to reference Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466CrossRefMATH Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466CrossRefMATH
28.
go back to reference Chen JS, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for galerkin meshfree methods. Int J Numer Methods Eng 95(5):387–418MathSciNetCrossRefMATH Chen JS, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for galerkin meshfree methods. Int J Numer Methods Eng 95(5):387–418MathSciNetCrossRefMATH
29.
go back to reference Guan PC, Chi S-W, Chen JS, Slawson TR, Roth MJ (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047CrossRef Guan PC, Chi S-W, Chen JS, Slawson TR, Roth MJ (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047CrossRef
30.
go back to reference Hillman M, Chen JS, Chi SW (2014) Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput Part Mech 1:245–256CrossRef Hillman M, Chen JS, Chi SW (2014) Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput Part Mech 1:245–256CrossRef
31.
go back to reference Hillman M, Chen JS, Bazilevs Y (2015) Variationally consistent domain integration for isogeometric analysis. Comput Methods Appl Mech Eng 284:521–540MathSciNetCrossRef Hillman M, Chen JS, Bazilevs Y (2015) Variationally consistent domain integration for isogeometric analysis. Comput Methods Appl Mech Eng 284:521–540MathSciNetCrossRef
32.
go back to reference Hillman M, Chen JS (2016) An accelerated, convergent, and stable nodal integration in galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107:603–630MathSciNetCrossRefMATH Hillman M, Chen JS (2016) An accelerated, convergent, and stable nodal integration in galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107:603–630MathSciNetCrossRefMATH
33.
go back to reference Chen JS, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193(27–29):2827–2844CrossRefMATH Chen JS, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193(27–29):2827–2844CrossRefMATH
34.
go back to reference Massing A, Larson MG, Logg A, Rognes ME (2014) A stabilized Nitsche fictitious domain method for the Stokes problem. J Sci Comput 61(3):604–628MathSciNetCrossRefMATH Massing A, Larson MG, Logg A, Rognes ME (2014) A stabilized Nitsche fictitious domain method for the Stokes problem. J Sci Comput 61(3):604–628MathSciNetCrossRefMATH
36.
go back to reference Dettmer WG, Kadapa C, Peric D (2016) A stabilised immersed boundary method on hierarchical B-spline grids. Comput Methods Appl Mech Eng 311:415–437MathSciNetCrossRef Dettmer WG, Kadapa C, Peric D (2016) A stabilised immersed boundary method on hierarchical B-spline grids. Comput Methods Appl Mech Eng 311:415–437MathSciNetCrossRef
37.
go back to reference Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH
38.
go back to reference Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27:1–31MathSciNetCrossRefMATH Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27:1–31MathSciNetCrossRefMATH
39.
go back to reference Sedov LI (1993) Similarity and dimensional methods in mechanics, 10th edn. CRC Press, Boca Raton Sedov LI (1993) Similarity and dimensional methods in mechanics, 10th edn. CRC Press, Boca Raton
40.
go back to reference Giordano J, Jourdan G, Burtschell Y, Medale M, Zeitoun DE, Houas L (2005) Shock wave impacts on deforming panel, an application of fluid–structure interaction. Shock Waves 14(1–2):103–110 Giordano J, Jourdan G, Burtschell Y, Medale M, Zeitoun DE, Houas L (2005) Shock wave impacts on deforming panel, an application of fluid–structure interaction. Shock Waves 14(1–2):103–110
41.
go back to reference Deiterding R, Wood S (2013) Parallel adaptive fluid–structure interaction simulation of explosions impacting on building structures. Comput Fluids 88:719–729CrossRef Deiterding R, Wood S (2013) Parallel adaptive fluid–structure interaction simulation of explosions impacting on building structures. Comput Fluids 88:719–729CrossRef
Metadata
Title
A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations
Authors
Y. Bazilevs
G. Moutsanidis
J. Bueno
K. Kamran
D. Kamensky
M. C. Hillman
H. Gomez
J. S. Chen
Publication date
14-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 1/2017
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1395-2

Other articles of this Issue 1/2017

Computational Mechanics 1/2017 Go to the issue