Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

A New Generic Model for Adaptive Shock Absorbers

Authors: Niklas Kunz, Steffen Müller

Published in: Advances in Dynamics of Vehicles on Roads and Tracks

Publisher: Springer International Publishing

share
SHARE

Abstract

Adaptive shock absorbers improve the ride quality by changing the damping characteristic depending on road excitation. An adjustable bypass valve allows to switch between different force characteristics. This paper introduces a new generic damper model which uses a modular damping function (MDF) to adapt the resulting force output through position-, stroke- and frequency-dependent adjustments. The piston motion is used to determine the shock absorber’s basic force and the state-dependent force difference, which results from the adjustable bypass. In contrast to established modeling approaches that are used for digital performance predictions in the early stage of the development process, MDF includes both the maximum and the minimum force characteristic, thus allowing the implementation of adaptive shock absorbers. Few additional parameters are required to specify both hysteresis and the adjustable bypass effect. In later stages, measurement data can be used to fit the model quality to the increasing maturity level of the described shock absorber.
Literature
1.
go back to reference Barethiye, V., Pohit, G., Mitra, A.: A combined nonlinear and hysteresis model of shock absorber for quarter car simulation on the basis of experimental data. Eng. Sci. Technol. Int. J. 20(6), 1610–1622 (2017) Barethiye, V., Pohit, G., Mitra, A.: A combined nonlinear and hysteresis model of shock absorber for quarter car simulation on the basis of experimental data. Eng. Sci. Technol. Int. J. 20(6), 1610–1622 (2017)
2.
go back to reference Bedük, M.D., Çalışkan, K., Henze, R., Küçükay, F.: Advanced parameter analysis for damper influence on ride dynamics. J. Vib. Control 24(8), 1393–1411 (2018) CrossRef Bedük, M.D., Çalışkan, K., Henze, R., Küçükay, F.: Advanced parameter analysis for damper influence on ride dynamics. J. Vib. Control 24(8), 1393–1411 (2018) CrossRef
3.
go back to reference Boggs, C., Ahmadian, M., Southward, S.: Efficient empirical modelling of a high-performance shock absorber for vehicle dynamics studies. Veh. Syst. Dyn. 48(4), 481–505 (2010) CrossRef Boggs, C., Ahmadian, M., Southward, S.: Efficient empirical modelling of a high-performance shock absorber for vehicle dynamics studies. Veh. Syst. Dyn. 48(4), 481–505 (2010) CrossRef
4.
go back to reference Dixon, J.C.: The Shock Absorber Handbook, 2nd edn. Wiley, Chichester (2007) CrossRef Dixon, J.C.: The Shock Absorber Handbook, 2nd edn. Wiley, Chichester (2007) CrossRef
5.
go back to reference Dragon, L., Faul, R., Grossman, T., Colditz, J.: Objektive und subjektive Abstimmung der Fahrkultur mittels digitaler Prototypen unter Einbeziehung von Simulatoren ( Objective and subjective tuning of the driving culture with digital prototypes using simulators). In: 3. Nationale Tagung Humanschwingungen, pp. 181 – 196. VDI-Verlag, Dresden (2007) Dragon, L., Faul, R., Grossman, T., Colditz, J.: Objektive und subjektive Abstimmung der Fahrkultur mittels digitaler Prototypen unter Einbeziehung von Simulatoren ( Objective and subjective tuning of the driving culture with digital prototypes using simulators). In: 3. Nationale Tagung Humanschwingungen, pp. 181 – 196. VDI-Verlag, Dresden (2007)
6.
go back to reference Duym, S., Stiens, R., Reybrouck, K.: Evaluation of shock absorber models. Veh. Syst. Dyn. 27(2), 109–127 (1997) CrossRef Duym, S., Stiens, R., Reybrouck, K.: Evaluation of shock absorber models. Veh. Syst. Dyn. 27(2), 109–127 (1997) CrossRef
7.
go back to reference Groß, A., Stretz, A., Ersoy, M., Eulenbach, H.D., Gold, H., Sonnenburg, R.: Bestandteile der Dämpfung (Damping components). In: Ersoy, M., Gies, S. (eds.) Fahrwerkhandbuch (Suspension handbook), pp. 487–540. Springer Fachmedien Wiesbaden, Wiesbaden (2017) CrossRef Groß, A., Stretz, A., Ersoy, M., Eulenbach, H.D., Gold, H., Sonnenburg, R.: Bestandteile der Dämpfung (Damping components). In: Ersoy, M., Gies, S. (eds.) Fahrwerkhandbuch (Suspension handbook), pp. 487–540. Springer Fachmedien Wiesbaden, Wiesbaden (2017) CrossRef
8.
go back to reference Lee, C.T., Moon, B.Y.: Study on the damping performance characteristics analysis of shock absorber of vehicle by considering fluid force. J. Mech. Sci. Technol. 19(2), 520–528 (2005) CrossRef Lee, C.T., Moon, B.Y.: Study on the damping performance characteristics analysis of shock absorber of vehicle by considering fluid force. J. Mech. Sci. Technol. 19(2), 520–528 (2005) CrossRef
9.
go back to reference Pracny, V., Meywerk, M., Lion, A.: Full vehicle simulation using thermomechanically coupled hybrid neural network shock absorber model. Veh. Syst. Dyn. 46(3), 229–238 (2008) CrossRef Pracny, V., Meywerk, M., Lion, A.: Full vehicle simulation using thermomechanically coupled hybrid neural network shock absorber model. Veh. Syst. Dyn. 46(3), 229–238 (2008) CrossRef
10.
go back to reference Reybrouck, K.: A non linear parametric model of an automotive shock absorber. In: SAE Technical Paper, 940869. SAE International (1994) Reybrouck, K.: A non linear parametric model of an automotive shock absorber. In: SAE Technical Paper, 940869. SAE International (1994)
11.
go back to reference Segel, L., Lang, H.H.: The mechanics of automotive hydraulic dampers at high stroking frequencies. Veh. Syst. Dyn. 10(2–3), 82–85 (1981) CrossRef Segel, L., Lang, H.H.: The mechanics of automotive hydraulic dampers at high stroking frequencies. Veh. Syst. Dyn. 10(2–3), 82–85 (1981) CrossRef
12.
go back to reference Sorniotti, A., D’Alfio, N., Morgando, A.: Shock absorber modeling and experimental testing. In: SAE Technical Paper. SAE International (2007) Sorniotti, A., D’Alfio, N., Morgando, A.: Shock absorber modeling and experimental testing. In: SAE Technical Paper. SAE International (2007)
Metadata
Title
A New Generic Model for Adaptive Shock Absorbers
Authors
Niklas Kunz
Steffen Müller
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-38077-9_207

Premium Partner