Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2018

04-06-2018

A New Method for Optimizing Hot Processing Parameters of Mg-6.0Zn-0.5Mn-0.5Er Alloy Based on Kinetic Model of Dynamic Recrystallization and Processing Map

Authors: Bin-Jiang Lv, Feng Guo, Qing-Lun Che, Yang Xu, Ning Cui, Yuan-Lin Guan

Published in: Journal of Materials Engineering and Performance | Issue 7/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hot deformation behavior of the cast-homogenized Mg-6.0Zn-0.5Mn-0.5Er alloy was studied using dynamic recrystallization (DRX) kinetic model and processing map. The compressing tests were conducted in the temperature range of 250-450 °C and strain rates of 0.001-1 s−1. According to the evolution of microstructures, under lower strain rates, the main DRX mechanism of Mg-6.0Zn-0.5Mn-0.5Er alloy is continuous DRX (CDRX); twinning induced DRX (TDRX) and CDRX both become the main DRX mechanism under higher strain rates. The DRX kinetics model of Mg-6.0Zn-0.5Mn-0.5Er alloy is calculated as \(X_{\text{DRX}} = 1 - \exp \left[ { - 1.9463\left( {\frac{{\varepsilon - \varepsilon_{\text{c}} }}{{\varepsilon^{*} }}} \right)^{1.4608} } \right]\), which is corresponding to the microstructure evolutions of DRX under different deformation conditions. The contour map of DRX was proposed based on the calculation results of DRX kinetics model. The processing maps are constructed to predict processing parameters of the alloy, and the predictability was evaluated combining with the contour map of DRX and dynamic materials model (DMM) processing map. It is deduced from the microstructures evolution and processing map that the optimum processing domain is mainly at 380-450 °C and 0.01-0.001 s−1, and 410-420 °C and 0.01-1 s−1.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Abbasi, A. Abdollahzadeh, B. Bagheri, and H. Omidvar, The Effect of SIC Particle Addition During FSW on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy, J. Mater. Eng. Perform., 2015, 24, p 5037–5045CrossRef M. Abbasi, A. Abdollahzadeh, B. Bagheri, and H. Omidvar, The Effect of SIC Particle Addition During FSW on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy, J. Mater. Eng. Perform., 2015, 24, p 5037–5045CrossRef
2.
go back to reference Z.L. Liu, Y. Liu, X.Q. Liu, and M.M. Wang, Effect of Minor Zn Additions on the Mechanical and Corrosion Properties of Solution-Treated AM60-2%Re Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25, p 2855–2865CrossRef Z.L. Liu, Y. Liu, X.Q. Liu, and M.M. Wang, Effect of Minor Zn Additions on the Mechanical and Corrosion Properties of Solution-Treated AM60-2%Re Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25, p 2855–2865CrossRef
3.
go back to reference M. Shalbafi, R. Roumina, and R. Mahmudi, Hot Deformation of the Extruded Mg-10Li-1Zn Alloy: Constitutive Analysis and Processing Maps, J. Alloys Compd., 2017, 696, p 1269–1277CrossRef M. Shalbafi, R. Roumina, and R. Mahmudi, Hot Deformation of the Extruded Mg-10Li-1Zn Alloy: Constitutive Analysis and Processing Maps, J. Alloys Compd., 2017, 696, p 1269–1277CrossRef
4.
go back to reference B. Inem, Dynamic Recrystallization in a Thermomechanically Processed Metal Matrix Composite, Mater. Sci. Eng. A, 1995, 197, p 91–95CrossRef B. Inem, Dynamic Recrystallization in a Thermomechanically Processed Metal Matrix Composite, Mater. Sci. Eng. A, 1995, 197, p 91–95CrossRef
5.
go back to reference T.Y. Kwak, H.K. Lim, and W.J. Kim, Hot Compression Characteristics and Processing Maps of a Cast Mg-9.5Zn-2.0Y Alloy with Icosahedral Quasicrystalline Phase, J. Alloys Compd., 2015, 644, p 645–653CrossRef T.Y. Kwak, H.K. Lim, and W.J. Kim, Hot Compression Characteristics and Processing Maps of a Cast Mg-9.5Zn-2.0Y Alloy with Icosahedral Quasicrystalline Phase, J. Alloys Compd., 2015, 644, p 645–653CrossRef
6.
go back to reference N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Hot Deformation and Processing Map of an As-Extruded Mg-Zn-Mn-Y Alloy Containing I, and W Phases, Mater. Design., 2015, 87, p 245–255CrossRef N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Hot Deformation and Processing Map of an As-Extruded Mg-Zn-Mn-Y Alloy Containing I, and W Phases, Mater. Design., 2015, 87, p 245–255CrossRef
7.
go back to reference H. Zhou, Q.D. Wang, B. Ye, and W. Guo, Hot Deformation and Processing Maps of As-Extruded Mg-9.8Gd-2.7Y-0.4Zr Mg Alloy, Mater. Sci. Eng. A, 2013, 576, p 101–107CrossRef H. Zhou, Q.D. Wang, B. Ye, and W. Guo, Hot Deformation and Processing Maps of As-Extruded Mg-9.8Gd-2.7Y-0.4Zr Mg Alloy, Mater. Sci. Eng. A, 2013, 576, p 101–107CrossRef
8.
go back to reference X.H. Chen, X.L. Wang, and Z.H. Zhang, Research Status of Dynamic Recrystallization of Magnesium Alloys, Ordnance Mater. Sci. Eng., 2013, 36, p 148–152 X.H. Chen, X.L. Wang, and Z.H. Zhang, Research Status of Dynamic Recrystallization of Magnesium Alloys, Ordnance Mater. Sci. Eng., 2013, 36, p 148–152
9.
go back to reference C.M. Liu, Z.J. Liu, X.R. Zhu, and H.T. Zhou, Research and Development Progress of Dynamic Recrystallization in Pure Magnesium and Its Alloys, Trans. Nonferrous Metal. Soc., 2006, 16, p 1–12CrossRef C.M. Liu, Z.J. Liu, X.R. Zhu, and H.T. Zhou, Research and Development Progress of Dynamic Recrystallization in Pure Magnesium and Its Alloys, Trans. Nonferrous Metal. Soc., 2006, 16, p 1–12CrossRef
10.
go back to reference B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan, Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Mg-2.0Zn-0.3Zr Alloy Based on True Stress–Strain Curves, Mater. Sci. Eng. A, 2013, 560, p 727–733CrossRef B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan, Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Mg-2.0Zn-0.3Zr Alloy Based on True Stress–Strain Curves, Mater. Sci. Eng. A, 2013, 560, p 727–733CrossRef
11.
go back to reference B.J. Lv, J. Peng, Y.J. Wang, X.Q. An, L.P. Zhong, A.T. Tang, and F.S. Pan, Dynamic Recrystallization Behavior and Hot Workability of Mg-2.0Zn-0.3Zr-0.9Y Alloy by Using Hot Compression Test, Mater. Des, 2014, 53, p 357–365CrossRef B.J. Lv, J. Peng, Y.J. Wang, X.Q. An, L.P. Zhong, A.T. Tang, and F.S. Pan, Dynamic Recrystallization Behavior and Hot Workability of Mg-2.0Zn-0.3Zr-0.9Y Alloy by Using Hot Compression Test, Mater. Des, 2014, 53, p 357–365CrossRef
12.
go back to reference B.J. Lv, J. Peng, Y. Peng, A.T. Tang, and F.S. Pan, The Effect of LPSO Phase on Hot Deformation Behavior and Dynamic Recrystallization Evolution of Mg-2.0 Zn-0.3 Zr-5.8 Y Alloy, Mater. Sci. Eng. A, 2013, 579, p 209–216CrossRef B.J. Lv, J. Peng, Y. Peng, A.T. Tang, and F.S. Pan, The Effect of LPSO Phase on Hot Deformation Behavior and Dynamic Recrystallization Evolution of Mg-2.0 Zn-0.3 Zr-5.8 Y Alloy, Mater. Sci. Eng. A, 2013, 579, p 209–216CrossRef
13.
go back to reference B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang, and A.T. Tang, The Effect of 14H LPSO Phase on Dynamic Recrystallization Behavior and Hot Workability of Mg-2.0Zn-0.3Zr-5.8Y Alloy, Mater. Sci. Eng. A, 2014, 599, p 150–159CrossRef B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang, and A.T. Tang, The Effect of 14H LPSO Phase on Dynamic Recrystallization Behavior and Hot Workability of Mg-2.0Zn-0.3Zr-5.8Y Alloy, Mater. Sci. Eng. A, 2014, 599, p 150–159CrossRef
14.
go back to reference B.J. Lv, J. Peng, and Z. Chu, The Effect of Icosahedral Phase on Dynamic Recrystallization Evolution and Hot Workability of Mg-2.0Zn-0.3Zr-0.2Y Alloy, J. Mater. Eng. Perform., 2015, 24, p 3502–3512CrossRef B.J. Lv, J. Peng, and Z. Chu, The Effect of Icosahedral Phase on Dynamic Recrystallization Evolution and Hot Workability of Mg-2.0Zn-0.3Zr-0.2Y Alloy, J. Mater. Eng. Perform., 2015, 24, p 3502–3512CrossRef
15.
go back to reference B. Chen and J. Zhang, Microstructure and Mechanical Properties of ZK60-Er Magnesium Alloys, Mater. Sci. Eng. A, 2015, 633, p 154–160CrossRef B. Chen and J. Zhang, Microstructure and Mechanical Properties of ZK60-Er Magnesium Alloys, Mater. Sci. Eng. A, 2015, 633, p 154–160CrossRef
16.
go back to reference Q. Wang, K. Liu, Z. Wang, S. Li, and W. Du, Microstructure, Texture and Mechanical Properties of As-Extruded Mg-Zn-Er Alloys Containing W-Phase, J. Alloys Compd., 2014, 602, p 32–39CrossRef Q. Wang, K. Liu, Z. Wang, S. Li, and W. Du, Microstructure, Texture and Mechanical Properties of As-Extruded Mg-Zn-Er Alloys Containing W-Phase, J. Alloys Compd., 2014, 602, p 32–39CrossRef
17.
go back to reference J. Zhang, B. Chen, and C. Liu, An Investigation of Dynamic Recrystallization Behavior of ZK60-Er Magnesium Alloy, Mater. Sci. Eng. A, 2014, 612, p 253–266CrossRef J. Zhang, B. Chen, and C. Liu, An Investigation of Dynamic Recrystallization Behavior of ZK60-Er Magnesium Alloy, Mater. Sci. Eng. A, 2014, 612, p 253–266CrossRef
18.
go back to reference C.C. Sun, K. Liu, Z.H. Wang, S.B. Li, X. Du, and W.B. Du, Hot Deformation Behaviors and Processing Maps of Mg-Zn-Er Alloys Based on Gleeble-1500 Hot Compression Simulation, Trans. Nonferrous Metal. Soc., 2016, 26, p 3123–3134CrossRef C.C. Sun, K. Liu, Z.H. Wang, S.B. Li, X. Du, and W.B. Du, Hot Deformation Behaviors and Processing Maps of Mg-Zn-Er Alloys Based on Gleeble-1500 Hot Compression Simulation, Trans. Nonferrous Metal. Soc., 2016, 26, p 3123–3134CrossRef
19.
go back to reference T. Sakai and J.J. Jonas, Overview No. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Mater., 1984, 32, p 189–209CrossRef T. Sakai and J.J. Jonas, Overview No. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Mater., 1984, 32, p 189–209CrossRef
20.
go back to reference X. Kai, Z. Li, G. Fan, Q. Guo, Z. Tan, W. Zhang, Y. Su, W. Lu, W.J. Moon, and D. Zhang, Strong and Ductile Particulate Reinforced Ultrafine-Grained Metallic Composites Fabricated by Flake Powder Metallurgy, Scr. Mater., 2013, 68, p 555–558CrossRef X. Kai, Z. Li, G. Fan, Q. Guo, Z. Tan, W. Zhang, Y. Su, W. Lu, W.J. Moon, and D. Zhang, Strong and Ductile Particulate Reinforced Ultrafine-Grained Metallic Composites Fabricated by Flake Powder Metallurgy, Scr. Mater., 2013, 68, p 555–558CrossRef
21.
go back to reference A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558CrossRef A. Laasraoui and J.J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558CrossRef
22.
go back to reference C. Roucoules, S. Yue, and J.J. Jonas, Effect of Alloying Elements on Metadynamic Recrystallization in HSLA Steels, Metall. Trans. A, 1995, 26, p 181–190CrossRef C. Roucoules, S. Yue, and J.J. Jonas, Effect of Alloying Elements on Metadynamic Recrystallization in HSLA Steels, Metall. Trans. A, 1995, 26, p 181–190CrossRef
23.
go back to reference C.M. Sellars, Modelling Microstructural Development During Hot Rolling, Mater. Sci. Technol. Lond., 2013, 6, p 1072–1081CrossRef C.M. Sellars, Modelling Microstructural Development During Hot Rolling, Mater. Sci. Technol. Lond., 2013, 6, p 1072–1081CrossRef
24.
go back to reference Y. Cai, L. Wan, Z.H. Guo, C.Y. Sun, D.J. Yang, Q.D. Zhang, and Y.L. Li, Hot Deformation Characteristics of AZ80 Magnesium Alloy: Work Hardening Effect and Processing Parameter Sensitivities, Mater. Sci. Eng. A, 2017, 687, p 113–122CrossRef Y. Cai, L. Wan, Z.H. Guo, C.Y. Sun, D.J. Yang, Q.D. Zhang, and Y.L. Li, Hot Deformation Characteristics of AZ80 Magnesium Alloy: Work Hardening Effect and Processing Parameter Sensitivities, Mater. Sci. Eng. A, 2017, 687, p 113–122CrossRef
25.
go back to reference Y. Xu, L. Hu, and Y. Sun, Deformation Behaviour and Dynamic Recrystallization of AZ61 Magnesium Alloy, J. Alloys Compd., 2013, 580, p 262–269CrossRef Y. Xu, L. Hu, and Y. Sun, Deformation Behaviour and Dynamic Recrystallization of AZ61 Magnesium Alloy, J. Alloys Compd., 2013, 580, p 262–269CrossRef
26.
go back to reference S.I. Kim and Y.C. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng. A, 2001, 311, p 108–113CrossRef S.I. Kim and Y.C. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng. A, 2001, 311, p 108–113CrossRef
27.
go back to reference E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef
28.
go back to reference H. Li, H. Wang, Z. Li, C. Liu, and H. Liu, Flow Behavior and Processing Map of As-Cast Mg-10Gd-4.8Y-2Zn-0.6Zr Alloy, Mater. Sci. Eng. A, 2010, 528, p 154–160CrossRef H. Li, H. Wang, Z. Li, C. Liu, and H. Liu, Flow Behavior and Processing Map of As-Cast Mg-10Gd-4.8Y-2Zn-0.6Zr Alloy, Mater. Sci. Eng. A, 2010, 528, p 154–160CrossRef
29.
go back to reference H.C. Xiao, S.N. Jiang, B. Tang, W.H. Hao, Y.H. Gao, Z.Y. Chen, and C.M. Liu, Flow Behavior and Processing Map of As-Cast Mg-10Gd-4.8Y-2Zn-0.6Zr Alloy, Mater. Sci. Eng. A, 2015, 628, p 311–318CrossRef H.C. Xiao, S.N. Jiang, B. Tang, W.H. Hao, Y.H. Gao, Z.Y. Chen, and C.M. Liu, Flow Behavior and Processing Map of As-Cast Mg-10Gd-4.8Y-2Zn-0.6Zr Alloy, Mater. Sci. Eng. A, 2015, 628, p 311–318CrossRef
30.
go back to reference O. Sivakesavam and Y.V.R.K. Prasad, Characteristics of Superplasticity Domain in the Processing Map for Hot Working of As-Cast Mg-11.5Li-1.5Al Alloy, Mater. Sci. Eng. A, 2002, 323, p 270–277CrossRef O. Sivakesavam and Y.V.R.K. Prasad, Characteristics of Superplasticity Domain in the Processing Map for Hot Working of As-Cast Mg-11.5Li-1.5Al Alloy, Mater. Sci. Eng. A, 2002, 323, p 270–277CrossRef
31.
go back to reference Z. Zhou, Q. Fan, Z. Xia, A. Hao, W. Yang, W. Ji, and H. Cao, Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy, J. Mater. Sci. Technol., 2017, 33, p 637–644CrossRef Z. Zhou, Q. Fan, Z. Xia, A. Hao, W. Yang, W. Ji, and H. Cao, Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy, J. Mater. Sci. Technol., 2017, 33, p 637–644CrossRef
32.
go back to reference Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15, p 1883–1892CrossRef Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15, p 1883–1892CrossRef
33.
go back to reference H. Ziegler, Progress in Solid Mechanics, Vol 4, I.N. Sneddon and R. Hill, Ed., Wiley, New York, 1963, p 93–191 H. Ziegler, Progress in Solid Mechanics, Vol 4, I.N. Sneddon and R. Hill, Ed., Wiley, New York, 1963, p 93–191
Metadata
Title
A New Method for Optimizing Hot Processing Parameters of Mg-6.0Zn-0.5Mn-0.5Er Alloy Based on Kinetic Model of Dynamic Recrystallization and Processing Map
Authors
Bin-Jiang Lv
Feng Guo
Qing-Lun Che
Yang Xu
Ning Cui
Yuan-Lin Guan
Publication date
04-06-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3443-2

Other articles of this Issue 7/2018

Journal of Materials Engineering and Performance 7/2018 Go to the issue

Premium Partners