Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 5/2021

12-10-2020 | Research Article-Civil Engineering

A New Method for Predicting the Ingredients of Self-Compacting Concrete (SCC) Including Fly Ash (FA) Using Data Envelopment Analysis (DEA)

Authors: Farzad Rezai Balf, Hamidreza Mahmoodi Kordkheili, Alireza Mahmoodi Kordkheili

Published in: Arabian Journal for Science and Engineering | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Self-compacting concrete (SCC) is a liquid mixture appropriate for putting in structures with excessive reinforcement without vibration. The application of SCC has found wide use in practice. However, its application is often limited by lack of knowledge on mix material gained from laboratory tests. This paper presents a nonparametric mathematical method for the design of SCC mixes containing fly ash, which called as data envelopment analysis (DEA). DEA have the ability to estimate a set of units (a unit is consisted of multi-input–multi-output), in order to determine their efficiencies. To create DEA models, a database of experimental data was collected from the technical literature and applied. The data applied in the data envelopment analysis approach are organized in a format of six inputs parameters that contain superplasticizer, coarse aggregates, fine aggregates, water–binder ratio, fly ash replacement percentage, and the total binder content. Four outputs parameters are predicted based on the DEA method as the V-funnel time, the slump flow, the L-box ratio, and the cylindrical compressive strength at 28 days of SCC including fly ash. In this paper, we predict the optimal level of input required to produce the level of output required by SCC using DEA. To validate the usefulness of the suggested model and better its proficiency, a comparison of the DEA model with other investigator’s empirical results and other models results such as ANN was performed, and a good assent was gained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Douma, O.B.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A.: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 28(1), 707–718 (2017) Douma, O.B.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A.: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 28(1), 707–718 (2017)
2.
go back to reference Boukhatem, B.; Kenai, S.; Tagnit-Hamou, A.; Ghrici, M.: Application of new information technology on concrete: an overview. J. Civ. Eng. Manag. 17(2), 248–258 (2011) Boukhatem, B.; Kenai, S.; Tagnit-Hamou, A.; Ghrici, M.: Application of new information technology on concrete: an overview. J. Civ. Eng. Manag. 17(2), 248–258 (2011)
3.
go back to reference Aiyer, B.G.; Kim, D.; Karingattikkal, N.; Samui, P.; Rao, P.R.: Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE J. Civ. Eng. 18(6), 1753–1758 (2014) Aiyer, B.G.; Kim, D.; Karingattikkal, N.; Samui, P.; Rao, P.R.: Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine. KSCE J. Civ. Eng. 18(6), 1753–1758 (2014)
4.
go back to reference Gencel, O.; Cengiz, O.Z.E.L.; Koksal, F.; Martinez-Barrera, G.; Brostow, W.; Polat, H.: Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete. Mater. Sci. 19(2), 203–215 (2013) Gencel, O.; Cengiz, O.Z.E.L.; Koksal, F.; Martinez-Barrera, G.; Brostow, W.; Polat, H.: Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete. Mater. Sci. 19(2), 203–215 (2013)
5.
go back to reference Tayfur, G.; Erdem, T.K.; Kırca, Ö.: Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks. J. Mater. Civ. Eng. 26(11), 04014079 (2014) Tayfur, G.; Erdem, T.K.; Kırca, Ö.: Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks. J. Mater. Civ. Eng. 26(11), 04014079 (2014)
6.
go back to reference Yeh, I.C.: Analysis of strength of concrete using design of experiments and neural networks. J. Mater. Civ. Eng. 18(4), 597–604 (2006) Yeh, I.C.: Analysis of strength of concrete using design of experiments and neural networks. J. Mater. Civ. Eng. 18(4), 597–604 (2006)
7.
go back to reference Pham, A.D.; Hoang, N.D.; Nguyen, Q.T.: Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J. Comput. Civ. Eng. 30(3), 06015002 (2016) Pham, A.D.; Hoang, N.D.; Nguyen, Q.T.: Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J. Comput. Civ. Eng. 30(3), 06015002 (2016)
8.
go back to reference Yuvaraj, P.; Murthy, A.R.; Iyer, N.R.; Sekar, S.K.; Samui, P.: Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Eng. Fract. Mech. 98, 29–43 (2013) Yuvaraj, P.; Murthy, A.R.; Iyer, N.R.; Sekar, S.K.; Samui, P.: Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Eng. Fract. Mech. 98, 29–43 (2013)
9.
go back to reference Yan, K.; Shi, C.: Prediction of elastic modulus of normal and high strength concrete by support vector machine. Constr. Build. Mater. 24(8), 1479–1485 (2010) Yan, K.; Shi, C.: Prediction of elastic modulus of normal and high strength concrete by support vector machine. Constr. Build. Mater. 24(8), 1479–1485 (2010)
10.
go back to reference Nair, Y.C.; Binsha, P.; Pradeep, V.V.; Sowmya, V.; Soman, K.P.: Spreadsheet implementation of random kitchen sink for classification. In: IEEE Sponsored 2nd International Conference on Innovations in Information. Embedded and Communication Systems (ICIIECS) (2015) Nair, Y.C.; Binsha, P.; Pradeep, V.V.; Sowmya, V.; Soman, K.P.: Spreadsheet implementation of random kitchen sink for classification. In: IEEE Sponsored 2nd International Conference on Innovations in Information. Embedded and Communication Systems (ICIIECS) (2015)
11.
go back to reference Sathyan, D.; Anand, K.B.; Prakash, A.J.; Premjith, B.: Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm. Int. J. Concr. Struct. Mater. 12(1), 24 (2018) Sathyan, D.; Anand, K.B.; Prakash, A.J.; Premjith, B.: Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm. Int. J. Concr. Struct. Mater. 12(1), 24 (2018)
12.
go back to reference Prakash, A.J.; Sathyan, D.; Anand, K.B.; Premjith, B.: Prediction of passing ability of self compacting concrete regularized least square approach. In: Proceedings of International Conference on Emerging and Sustainable Technologies for Infrastructure Systems, pp. 323–328 (2016) Prakash, A.J.; Sathyan, D.; Anand, K.B.; Premjith, B.: Prediction of passing ability of self compacting concrete regularized least square approach. In: Proceedings of International Conference on Emerging and Sustainable Technologies for Infrastructure Systems, pp. 323–328 (2016)
13.
go back to reference Jin-li, W.; Hai-qing, L.: Application of neural network in prediction for self-compaction concrete. In: Fuzzy Information and Engineering, pp. 733–738. Springer, Berlin (2010) Jin-li, W.; Hai-qing, L.: Application of neural network in prediction for self-compaction concrete. In: Fuzzy Information and Engineering, pp. 733–738. Springer, Berlin (2010)
14.
go back to reference Uysal, M.; Tanyildizi, H.: Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr. Build. Mater. 27(1), 404–414 (2012) Uysal, M.; Tanyildizi, H.: Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr. Build. Mater. 27(1), 404–414 (2012)
15.
go back to reference Siddique, R.; Aggarwal, P.; Aggarwal, Y.: Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 42(10), 780–786 (2011) Siddique, R.; Aggarwal, P.; Aggarwal, Y.: Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 42(10), 780–786 (2011)
16.
go back to reference Güneyisi, E.; Gesoglu, M.; Özbay, E.: Evaluating and forecasting the initial and final setting times of self-compacting concretes containing mineral admixtures by neural network. Mater. Struct. 42(4), 469–484 (2009) Güneyisi, E.; Gesoglu, M.; Özbay, E.: Evaluating and forecasting the initial and final setting times of self-compacting concretes containing mineral admixtures by neural network. Mater. Struct. 42(4), 469–484 (2009)
17.
go back to reference Zhou, S.Q.; Shi, J.J.; Yang, X.F.; Lei, L.: Application of neural network in prediction for flowing property of self-compacting concrete. J. Water Resour. Archit. Eng. 4, 012 (2005) Zhou, S.Q.; Shi, J.J.; Yang, X.F.; Lei, L.: Application of neural network in prediction for flowing property of self-compacting concrete. J. Water Resour. Archit. Eng. 4, 012 (2005)
18.
go back to reference Ni, H.G.; Wang, J.Z.: Prediction of compressive strength of concrete by neural networks. Cem. Concr. Res. 30(8), 1245–1250 (2000) Ni, H.G.; Wang, J.Z.: Prediction of compressive strength of concrete by neural networks. Cem. Concr. Res. 30(8), 1245–1250 (2000)
19.
go back to reference Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Caglar, N.; Bhatti, M.A.: Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 20(9), 769–775 (2006) Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Caglar, N.; Bhatti, M.A.: Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 20(9), 769–775 (2006)
20.
go back to reference Kewalramani, M.A.; Gupta, R.: Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 15(3), 374–379 (2006) Kewalramani, M.A.; Gupta, R.: Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 15(3), 374–379 (2006)
21.
go back to reference Topçu, İ.B.; Sarıdemir, M.: Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 42(1), 74–82 (2008) Topçu, İ.B.; Sarıdemir, M.: Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 42(1), 74–82 (2008)
22.
go back to reference Li, F.X.; Yu, Q.J.; Wei, J.X.; Li, J.X.: Predicting the workability of self-compacting concrete using artificial neural network. Adv. Mater. Res. 168, 1730–1734 (2011) Li, F.X.; Yu, Q.J.; Wei, J.X.; Li, J.X.: Predicting the workability of self-compacting concrete using artificial neural network. Adv. Mater. Res. 168, 1730–1734 (2011)
23.
go back to reference Prasad, B.R.; Eskandari, H.; Reddy, B.V.: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr. Build. Mater. 23(1), 117–128 (2009) Prasad, B.R.; Eskandari, H.; Reddy, B.V.: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr. Build. Mater. 23(1), 117–128 (2009)
24.
go back to reference Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos. 29(6), 474–480 (2007) Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cem. Concr. Compos. 29(6), 474–480 (2007)
25.
go back to reference Yeh, I.: Modeling slump of concrete with fly ash and superplasticizer. Comput. Concr. 5(6), 559–572 (2008) Yeh, I.: Modeling slump of concrete with fly ash and superplasticizer. Comput. Concr. 5(6), 559–572 (2008)
26.
go back to reference Yeh, I.: Prediction of workability of concrete using design of experiments for mixtures. Comput. Concr. 5(1), 1–20 (2008) Yeh, I.: Prediction of workability of concrete using design of experiments for mixtures. Comput. Concr. 5(1), 1–20 (2008)
27.
go back to reference Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E.: Prediction of fresh and hardened state properties of UHPC: comparative study of statistical mixture design and an artificial neural network model. J. Mater. Civ. Eng. 27(11), 04015017 (2015) Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E.: Prediction of fresh and hardened state properties of UHPC: comparative study of statistical mixture design and an artificial neural network model. J. Mater. Civ. Eng. 27(11), 04015017 (2015)
28.
go back to reference Sonebi, M.; Grünewald, S.; Cevik, A.; Walraven, J.: Modelling fresh properties of self-compacting concrete using neural network technique. Comput. Concr. 18(4), 903–920 (2016) Sonebi, M.; Grünewald, S.; Cevik, A.; Walraven, J.: Modelling fresh properties of self-compacting concrete using neural network technique. Comput. Concr. 18(4), 903–920 (2016)
29.
go back to reference Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge (2001)MATH Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge (2001)MATH
30.
go back to reference Pathak, S.S.; Sharma, S.; Sood, H.; Khitoliya, R.K.: Prediction of compressive strength of self compacting concrete with flyash and rice husk ash using adaptive neuro-fuzzy inference system. Editorial Preface 3(10), 112–118 (2012) Pathak, S.S.; Sharma, S.; Sood, H.; Khitoliya, R.K.: Prediction of compressive strength of self compacting concrete with flyash and rice husk ash using adaptive neuro-fuzzy inference system. Editorial Preface 3(10), 112–118 (2012)
31.
go back to reference Raheman, A.; Modani, P.O.: Prediction of properties of self compacting concrete using artificial neural network. Int. J. Eng. Res. Appl. 3(4), 333–339 (2013) Raheman, A.; Modani, P.O.: Prediction of properties of self compacting concrete using artificial neural network. Int. J. Eng. Res. Appl. 3(4), 333–339 (2013)
32.
go back to reference Malagavelli, V.; Manalel, P.A.: Modeling of compressive strength of admixture-based self compacting concrete using fuzzy logic and artificial neural networks. Asian J. Appl. Sci. 7(7), 536–551 (2014) Malagavelli, V.; Manalel, P.A.: Modeling of compressive strength of admixture-based self compacting concrete using fuzzy logic and artificial neural networks. Asian J. Appl. Sci. 7(7), 536–551 (2014)
33.
go back to reference Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998) Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)
34.
go back to reference Lee, S.C.: Prediction of concrete strength using artificial neural networks. Eng. Struct. 25(7), 849–857 (2003) Lee, S.C.: Prediction of concrete strength using artificial neural networks. Eng. Struct. 25(7), 849–857 (2003)
35.
go back to reference Tang, C.W.: Using radial basis function neural networks to model torsional strength of reinforced concrete beams. Comput. Concr. 3(5), 335–355 (2006) Tang, C.W.: Using radial basis function neural networks to model torsional strength of reinforced concrete beams. Comput. Concr. 3(5), 335–355 (2006)
36.
go back to reference Hossain, K.; Lachemi, M.; Easa, S.M.: Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action. Comput. Concr. 3(6), 439–454 (2006) Hossain, K.; Lachemi, M.; Easa, S.M.: Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action. Comput. Concr. 3(6), 439–454 (2006)
37.
go back to reference Tang, C.W.; Lin, Y.; Kuo, S.F.: Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs. Comput. Concr. 4(6), 477–497 (2007) Tang, C.W.; Lin, Y.; Kuo, S.F.: Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs. Comput. Concr. 4(6), 477–497 (2007)
38.
go back to reference Pala, M.; Özbay, E.; Öztaş, A.; Yuce, M.I.: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. 21(2), 384–394 (2007) Pala, M.; Özbay, E.; Öztaş, A.; Yuce, M.I.: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. 21(2), 384–394 (2007)
39.
go back to reference Topcu, I.B.; Sarıdemir, M.: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 41(3), 305–311 (2008) Topcu, I.B.; Sarıdemir, M.: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 41(3), 305–311 (2008)
40.
go back to reference Altun, F.; Kişi, Ö.; Aydin, K.: Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput. Mater. Sci. 42(2), 259–265 (2008) Altun, F.; Kişi, Ö.; Aydin, K.: Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput. Mater. Sci. 42(2), 259–265 (2008)
41.
go back to reference Khatibinia, M.; Feizbakhsh, A.; Mohseni, E.; Ranjbar, M.M.: Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine. Comput. Concr. 18(6), 1065–1082 (2016) Khatibinia, M.; Feizbakhsh, A.; Mohseni, E.; Ranjbar, M.M.: Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine. Comput. Concr. 18(6), 1065–1082 (2016)
42.
go back to reference Asteris, P.G.; Kolovos, K.G.: Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 31(1), 409–424 (2019) Asteris, P.G.; Kolovos, K.G.: Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 31(1), 409–424 (2019)
43.
go back to reference Asteris, P.G.; Kolovos, K.G.; Douvika, M.G.; Roinos, K.: Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civ. Eng. 20(sup1), s102–s122 (2016) Asteris, P.G.; Kolovos, K.G.; Douvika, M.G.; Roinos, K.: Prediction of self-compacting concrete strength using artificial neural networks. Eur. J. Environ. Civ. Eng. 20(sup1), s102–s122 (2016)
44.
go back to reference Asteris, P.G.; Roussis, P.C.; Douvika, M.G.: Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors 17(6), 1344 (2017) Asteris, P.G.; Roussis, P.C.; Douvika, M.G.: Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors 17(6), 1344 (2017)
45.
go back to reference Asteris, P.G.; Mokos, V.G.: Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 1–20 (2019) Asteris, P.G.; Mokos, V.G.: Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 1–20 (2019)
46.
go back to reference Li, Z.: Advanced Concrete Technology. Wiley, Hoboken (2011) Li, Z.: Advanced Concrete Technology. Wiley, Hoboken (2011)
47.
go back to reference Ozawa, K.; Maekawa, K.; Kunishima, H.; Okamura, H.: Performance of concrete based on the durability design of concrete structures. Proc. Second East Asia Pacific Conf. Struct. Eng. Constr. 1, 445–456 (1989) Ozawa, K.; Maekawa, K.; Kunishima, H.; Okamura, H.: Performance of concrete based on the durability design of concrete structures. Proc. Second East Asia Pacific Conf. Struct. Eng. Constr. 1, 445–456 (1989)
48.
go back to reference Okamura, H.; Ozawa, K.; Ouchi, M.: Self-compacting high performance concrete. Mag. Korea Concr. Inst. 7(5), 33–41 (1995) Okamura, H.; Ozawa, K.; Ouchi, M.: Self-compacting high performance concrete. Mag. Korea Concr. Inst. 7(5), 33–41 (1995)
49.
go back to reference Brooks, J.J.; Johari, M.M.; Mazloom, M.: Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 22(4), 293–301 (2000) Brooks, J.J.; Johari, M.M.; Mazloom, M.: Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 22(4), 293–301 (2000)
50.
go back to reference Wesche, K.: Fly Ash in Concrete: Properties and Performance (Rilem Report 7), Report of Technical Committee 67-FAB Use of Fly Ash in Building (2005) Wesche, K.: Fly Ash in Concrete: Properties and Performance (Rilem Report 7), Report of Technical Committee 67-FAB Use of Fly Ash in Building (2005)
51.
go back to reference Kurita, M.; Nomura, T.: Highly-flowable steel fiber-reinforced concrete containing fly ash. In: Malhotra, V.M. (ed) Proceedings of the Sixth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Vol. 178, pp 159–176. ACI Special Publication (1998) Kurita, M.; Nomura, T.: Highly-flowable steel fiber-reinforced concrete containing fly ash. In: Malhotra, V.M. (ed) Proceedings of the Sixth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Vol. 178, pp 159–176. ACI Special Publication (1998)
52.
go back to reference Lovell, C.K.; Schmidt, P.: A comparison of alternative approaches to the measurement of productive efficiency. In: Applications of Modern Production Theory: Efficiency and Productivity, pp. 3–32. Springer, Dordrecht (1988) Lovell, C.K.; Schmidt, P.: A comparison of alternative approaches to the measurement of productive efficiency. In: Applications of Modern Production Theory: Efficiency and Productivity, pp. 3–32. Springer, Dordrecht (1988)
53.
go back to reference Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stutz, J.: Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J. Econom. 30, 16–29 (1985)MathSciNetMATH Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stutz, J.: Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J. Econom. 30, 16–29 (1985)MathSciNetMATH
54.
go back to reference Zhu, J.: Multi-factor performance measure model with an application to Fortune 500 companies. Eur. J. Oper. Res. 123(1), 105–124 (2000)MATH Zhu, J.: Multi-factor performance measure model with an application to Fortune 500 companies. Eur. J. Oper. Res. 123(1), 105–124 (2000)MATH
55.
go back to reference Zhu, J.: Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and DEA Excel Solver. Kluwer Academic Publishers, Boston (2002) Zhu, J.: Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and DEA Excel Solver. Kluwer Academic Publishers, Boston (2002)
56.
go back to reference Charnes, A.; Cooper, W.W.; Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)MathSciNetMATH Charnes, A.; Cooper, W.W.; Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)MathSciNetMATH
57.
go back to reference Dadashi, A.; Mirbaha, B.: Prioritizing highway safety improvement projects: a Monte-Carlo based data envelopment analysis approach. Accid. Anal. Prev. 123, 387–395 (2019) Dadashi, A.; Mirbaha, B.: Prioritizing highway safety improvement projects: a Monte-Carlo based data envelopment analysis approach. Accid. Anal. Prev. 123, 387–395 (2019)
58.
go back to reference Li, H.X.; Li, Y.; Jiang, B.; Zhang, L.; Wu, X.; Lin, J.: Energy performance optimization of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis. Renew. Energy 149, 1414–1423 (2020) Li, H.X.; Li, Y.; Jiang, B.; Zhang, L.; Wu, X.; Lin, J.: Energy performance optimization of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis. Renew. Energy 149, 1414–1423 (2020)
59.
go back to reference Palafox-Alcantar, P.G.; Hunt, D.V.L.; Rogers, C.D.F.: The complementary use of game theory for the circular economy: a review of waste management decision-making methods in civil engineering. Waste Manag. 102, 598–612 (2020) Palafox-Alcantar, P.G.; Hunt, D.V.L.; Rogers, C.D.F.: The complementary use of game theory for the circular economy: a review of waste management decision-making methods in civil engineering. Waste Manag. 102, 598–612 (2020)
60.
go back to reference Zhang, J.; Li, H.; Xia, B.; Skitmore, M.: Impact of environment regulation on the efficiency of regional construction industry: a 3-stage data envelopment analysis (DEA). J. Clean. Prod. 200, 770–780 (2018) Zhang, J.; Li, H.; Xia, B.; Skitmore, M.: Impact of environment regulation on the efficiency of regional construction industry: a 3-stage data envelopment analysis (DEA). J. Clean. Prod. 200, 770–780 (2018)
61.
go back to reference Jiang, H.; Hua, M.; Zhang, J.; Cheng, P.; Ye, Z.; Huang, M.; Jin, Q.: Sustainability efficiency assessment of wastewater treatment plants in China: a data envelopment analysis based on cluster benchmarking. J. Clean. Prod. 244, 118729 (2020) Jiang, H.; Hua, M.; Zhang, J.; Cheng, P.; Ye, Z.; Huang, M.; Jin, Q.: Sustainability efficiency assessment of wastewater treatment plants in China: a data envelopment analysis based on cluster benchmarking. J. Clean. Prod. 244, 118729 (2020)
62.
go back to reference Banker, R.D.; Charnes, A.; Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984)MATH Banker, R.D.; Charnes, A.; Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984)MATH
63.
go back to reference Liu, F.H.F.; Peng, H.H.: Ranking of units on the DEA frontier with common weights. Comput. Oper. Res. 35(5), 1624–1637 (2008)MATH Liu, F.H.F.; Peng, H.H.: Ranking of units on the DEA frontier with common weights. Comput. Oper. Res. 35(5), 1624–1637 (2008)MATH
64.
go back to reference Balf, F.R.; Rezai, H.Z.; Jahanshahloo, G.R.; Lotfi, F.H.: Ranking efficient DMUs using the Tchebycheff norm. Appl. Math. Model. 36(1), 46–56 (2012)MathSciNetMATH Balf, F.R.; Rezai, H.Z.; Jahanshahloo, G.R.; Lotfi, F.H.: Ranking efficient DMUs using the Tchebycheff norm. Appl. Math. Model. 36(1), 46–56 (2012)MathSciNetMATH
65.
go back to reference Joro, T.; Korhonen, P.; Wallenius, J.: Structural comparison of data envelopment analysis and multiple objective linear programming. Manag. Sci. 44(7), 962–970 (1998)MATH Joro, T.; Korhonen, P.; Wallenius, J.: Structural comparison of data envelopment analysis and multiple objective linear programming. Manag. Sci. 44(7), 962–970 (1998)MATH
66.
go back to reference Wang, J.; Liu, S.: A multiple objective DEA projection model for some factors varying in restricted ranges. J. Xidian Univ. 27(1), 39–43 (2000). (in Chinese) Wang, J.; Liu, S.: A multiple objective DEA projection model for some factors varying in restricted ranges. J. Xidian Univ. 27(1), 39–43 (2000). (in Chinese)
67.
go back to reference Zhu, W.; Bartos, P.J.M.: Permeation properties of self-compacting concrete. Cem. Concr. Res. 33(6), 921–926 (2003) Zhu, W.; Bartos, P.J.M.: Permeation properties of self-compacting concrete. Cem. Concr. Res. 33(6), 921–926 (2003)
68.
go back to reference Naik, T.R.; Kumar, R.; Ramme, B.W.; Canpolat, F.: Development of high-strength, economical self-consolidating concrete. Constr. Build. Mater. 30, 463–469 (2012) Naik, T.R.; Kumar, R.; Ramme, B.W.; Canpolat, F.: Development of high-strength, economical self-consolidating concrete. Constr. Build. Mater. 30, 463–469 (2012)
69.
go back to reference Turk, K.; Karatas, M.; Gonen, T.: Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of SCC. KSCE J. Civ. Eng. 17(1), 202–209 (2013) Turk, K.; Karatas, M.; Gonen, T.: Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of SCC. KSCE J. Civ. Eng. 17(1), 202–209 (2013)
70.
go back to reference Liu, M.: Self-compacting concrete with different levels of pulverized fuel ash. Constr. Build. Mater. 24(7), 1245–1252 (2010) Liu, M.: Self-compacting concrete with different levels of pulverized fuel ash. Constr. Build. Mater. 24(7), 1245–1252 (2010)
Metadata
Title
A New Method for Predicting the Ingredients of Self-Compacting Concrete (SCC) Including Fly Ash (FA) Using Data Envelopment Analysis (DEA)
Authors
Farzad Rezai Balf
Hamidreza Mahmoodi Kordkheili
Alireza Mahmoodi Kordkheili
Publication date
12-10-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 5/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04927-3

Other articles of this Issue 5/2021

Arabian Journal for Science and Engineering 5/2021 Go to the issue

Premium Partners