Skip to main content
Top
Published in: Computational Mechanics 3/2018

30-11-2017 | Original Paper

A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff–Love shells. Part I: basic theory and modeling of delamination and transverse shear

Authors: Y. Bazilevs, M. S. Pigazzini, A. Ellison, H. Kim

Published in: Computational Mechanics | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on Isogeometric Analysis (IGA), where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff–Love thin shell. Continuum Damage Mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff–Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff–Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH
2.
go back to reference Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRefMATH Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRefMATH
3.
go back to reference Piegl L, Tiller W (1997) The NURBS book (monographs in visual communication), 2nd edn. Springer, New YorkCrossRefMATH Piegl L, Tiller W (1997) The NURBS book (monographs in visual communication), 2nd edn. Springer, New YorkCrossRefMATH
4.
go back to reference Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263MathSciNetCrossRefMATH Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263MathSciNetCrossRefMATH
5.
go back to reference Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914MathSciNetCrossRefMATH Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914MathSciNetCrossRefMATH
6.
go back to reference Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416MathSciNetCrossRefMATH Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416MathSciNetCrossRefMATH
7.
go back to reference Benson D, Bazilevs Y, Hsu M-C, Hughes T (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289MathSciNetCrossRefMATH Benson D, Bazilevs Y, Hsu M-C, Hughes T (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289MathSciNetCrossRefMATH
8.
go back to reference Benson D, Bazilevs Y, Hsu M-C, Hughes T (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378MathSciNetCrossRefMATH Benson D, Bazilevs Y, Hsu M-C, Hughes T (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378MathSciNetCrossRefMATH
9.
go back to reference Kiendl J, Hsu M-C, Wu M, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303MathSciNetCrossRef Kiendl J, Hsu M-C, Wu M, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303MathSciNetCrossRef
10.
go back to reference Bazilevs Y, Takizawa K, Tezduyar T (2013) Computational fluid-structure interaction: methods and applications. Wiley, New YorkCrossRefMATH Bazilevs Y, Takizawa K, Tezduyar T (2013) Computational fluid-structure interaction: methods and applications. Wiley, New YorkCrossRefMATH
11.
go back to reference Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetCrossRefMATH Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetCrossRefMATH
13.
go back to reference Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932MathSciNetCrossRefMATH Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932MathSciNetCrossRefMATH
16.
go back to reference Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071MathSciNetCrossRefMATH Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071MathSciNetCrossRefMATH
17.
go back to reference Takizawa K, Tezduyar TE, Terahara T (2016) Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200MathSciNetCrossRefMATH Takizawa K, Tezduyar TE, Terahara T (2016) Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200MathSciNetCrossRefMATH
18.
19.
go back to reference Chaboche J (1987) Continuum damage mechanics: present state and future trends. Nucl Eng Des 105:19–33CrossRef Chaboche J (1987) Continuum damage mechanics: present state and future trends. Nucl Eng Des 105:19–33CrossRef
20.
go back to reference Ladevéze P, Dantec EL (1992) Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43:257–267CrossRef Ladevéze P, Dantec EL (1992) Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43:257–267CrossRef
21.
go back to reference Matzenmiller A, Lubliner J, Taylor R (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152CrossRef Matzenmiller A, Lubliner J, Taylor R (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152CrossRef
22.
go back to reference Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334CrossRef Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334CrossRef
23.
go back to reference Pucka A, Schürmann H (2002) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 62:16331662 Pucka A, Schürmann H (2002) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 62:16331662
24.
go back to reference Dàvila C, Camanho P (November 2003) Failure criteria for FRP laminates in plane stress Technical Report NASA/TM-2003-212663. Langley Research Center, Hampton, Virginia Dàvila C, Camanho P (November 2003) Failure criteria for FRP laminates in plane stress Technical Report NASA/TM-2003-212663. Langley Research Center, Hampton, Virginia
25.
go back to reference Pinho S, Iannucci L, Robinson P (2006) Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: part I: development. Compos Part A 37:6373 Pinho S, Iannucci L, Robinson P (2006) Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: part I: development. Compos Part A 37:6373
26.
go back to reference Deng X, Korobenko A, Yan J, Bazilevs Y (2015) Isogeometric analysis of continuum damage in rotation-free composite shells. Comput Methods Appl Mech Eng 284:349–372MathSciNetCrossRef Deng X, Korobenko A, Yan J, Bazilevs Y (2015) Isogeometric analysis of continuum damage in rotation-free composite shells. Comput Methods Appl Mech Eng 284:349–372MathSciNetCrossRef
27.
go back to reference Remmers J, Wells G, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Methods Eng 58:2013–2040CrossRefMATH Remmers J, Wells G, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Methods Eng 58:2013–2040CrossRefMATH
28.
go back to reference Hosseini S, Remmers J, Verhoosel C, de Borst R (2015) Propagation of delamination in composite materials with isogeometric continuum shell elements. Int J Numer Methods Eng 102:159–179MathSciNetCrossRefMATH Hosseini S, Remmers J, Verhoosel C, de Borst R (2015) Propagation of delamination in composite materials with isogeometric continuum shell elements. Int J Numer Methods Eng 102:159–179MathSciNetCrossRefMATH
29.
go back to reference Carvalho ND, Chen B, Pinho S, Ratcliffe J, Baiz P, Tay T (2015) Modeling delamination migration in cross-ply tape laminates. Compos Part A 71:192–203CrossRef Carvalho ND, Chen B, Pinho S, Ratcliffe J, Baiz P, Tay T (2015) Modeling delamination migration in cross-ply tape laminates. Compos Part A 71:192–203CrossRef
30.
go back to reference Allix O, Ladevéze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22:235–242CrossRef Allix O, Ladevéze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22:235–242CrossRef
31.
go back to reference Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos Struct 31:61–74CrossRef Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos Struct 31:61–74CrossRef
32.
go back to reference Barbero E (2013) Finite element analysis of composite materials using Abaqus. CRC Press, Boca Raton Barbero E (2013) Finite element analysis of composite materials using Abaqus. CRC Press, Boca Raton
33.
go back to reference Camanho P, Dàvila C, de Moura F (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438CrossRef Camanho P, Dàvila C, de Moura F (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438CrossRef
34.
go back to reference Turon A, Camanho P, Costa J, Dàvila C (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:1072–1089CrossRef Turon A, Camanho P, Costa J, Dàvila C (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:1072–1089CrossRef
35.
go back to reference Jiang W-G, Hallett S, Green B, Wisnom M (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69:1982–1995CrossRefMATH Jiang W-G, Hallett S, Green B, Wisnom M (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69:1982–1995CrossRefMATH
36.
go back to reference Dàvila C, Camanho P, Turon A (2007) Cohesive elements for shells. Technical Report 214869, NASA Langley Research Center Dàvila C, Camanho P, Turon A (2007) Cohesive elements for shells. Technical Report 214869, NASA Langley Research Center
37.
go back to reference Nguyen V, Kerfriden P, Bordas S (2014) Two-and three-dimensional isogeometric cohesive elements for composite delamination analysis. Compos Part B 60:193–212CrossRef Nguyen V, Kerfriden P, Bordas S (2014) Two-and three-dimensional isogeometric cohesive elements for composite delamination analysis. Compos Part B 60:193–212CrossRef
38.
go back to reference Bischoff M, Bletzinger K, Wall W, Ramm E (2004) Models and finite elements for thin-walled structures. Encycl Computat Mech 2:59–137 Bischoff M, Bletzinger K, Wall W, Ramm E (2004) Models and finite elements for thin-walled structures. Encycl Computat Mech 2:59–137
39.
go back to reference Reddy J (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton. ISBN 9780849315923 Reddy J (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton. ISBN 9780849315923
40.
go back to reference Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos Part A 38:2333–2341CrossRef Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos Part A 38:2333–2341CrossRef
41.
go back to reference Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber-reinforced materials. J Compos Mater 7:448–464CrossRef Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber-reinforced materials. J Compos Mater 7:448–464CrossRef
42.
go back to reference Shahid I, Chang F-K (1995) An accumulative damage model for tensile and shear failures of laminated composite plates. J Compos Mater 29:926–981CrossRef Shahid I, Chang F-K (1995) An accumulative damage model for tensile and shear failures of laminated composite plates. J Compos Mater 29:926–981CrossRef
43.
go back to reference Bažant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177 Bažant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177
44.
46.
go back to reference Turon A, Camanho P, Costa J, Renart J (2010) Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos Struct 92:1857–1864CrossRef Turon A, Camanho P, Costa J, Renart J (2010) Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos Struct 92:1857–1864CrossRef
47.
go back to reference Benzeggagh M, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449CrossRef Benzeggagh M, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449CrossRef
48.
go back to reference Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–75MathSciNetCrossRefMATH Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–75MathSciNetCrossRefMATH
49.
go back to reference Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292CrossRef Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292CrossRef
50.
go back to reference Hughes TJR (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-Hall, Englewood CliffsMATH Hughes TJR (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-Hall, Englewood CliffsMATH
51.
go back to reference Auricchio F, da Veiga LB, Hughes T, Reali A, Sangalli G (2012) Isogeometric collocation for elastostatics and explicit dynamics. Comput Methods Appl Mech Eng 249–252:2–14MathSciNetCrossRefMATH Auricchio F, da Veiga LB, Hughes T, Reali A, Sangalli G (2012) Isogeometric collocation for elastostatics and explicit dynamics. Comput Methods Appl Mech Eng 249–252:2–14MathSciNetCrossRefMATH
52.
go back to reference Mi Y, Crisfield A, Davies G (1998) Progressive delamination using interface elements. J Compos Mater 32:1246–1272CrossRef Mi Y, Crisfield A, Davies G (1998) Progressive delamination using interface elements. J Compos Mater 32:1246–1272CrossRef
53.
go back to reference Turon A, Dàvila C, Camanho P, Costa J (2007) An engineering solution for mesh size effects in the simulation of selamination using cohesive zone models. Eng Fract Mech 74:1665–1682 Turon A, Dàvila C, Camanho P, Costa J (2007) An engineering solution for mesh size effects in the simulation of selamination using cohesive zone models. Eng Fract Mech 74:1665–1682
54.
go back to reference Falk M, Needleman A, Rice J (2001) A critical evaluation of cohesive zone models of dynamic fracture. J de Physi IV 11:43–50 Falk M, Needleman A, Rice J (2001) A critical evaluation of cohesive zone models of dynamic fracture. J de Physi IV 11:43–50
55.
go back to reference Carpinteri A (1989) Softening and snap-back instability in cohesive solids. Int J Numer Methods Eng 28:1521–1537CrossRef Carpinteri A (1989) Softening and snap-back instability in cohesive solids. Int J Numer Methods Eng 28:1521–1537CrossRef
56.
go back to reference Hellweg H, Crisfield M (1998) A new arc-length method for handling sharp snap-backs. Comput Struct 66:704709CrossRefMATH Hellweg H, Crisfield M (1998) A new arc-length method for handling sharp snap-backs. Comput Struct 66:704709CrossRefMATH
Metadata
Title
A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff–Love shells. Part I: basic theory and modeling of delamination and transverse shear
Authors
Y. Bazilevs
M. S. Pigazzini
A. Ellison
H. Kim
Publication date
30-11-2017
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 3/2018
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1513-1

Other articles of this Issue 3/2018

Computational Mechanics 3/2018 Go to the issue