Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 1/2021

22-06-2021 | Original Paper

A new sign detection design for the residue number system based on quantum-dot cellular automata

Authors: Lianbing Deng, Wenjian Liu, Daming Li, Bayan Omar Mohammed

Published in: Photonic Network Communications | Issue 1/2021

Login to get access
share
SHARE

Abstract

Sign detection has a wide application in digital fixed-point signal processing; however, it seems hard to conduct it in residue number systems (RNSs) based on complementary metal oxide semiconductor (CMOS). Also, quantum-dot cellular automata (QCA), as a useful substitution for CMOS technologies, provide many benefits such as low energy utilization and high velocity. However, up to now, there is not any paper that investigated the design of the QCA-based sign detection system. Therefore, here, we will introduce a method for RNS sign detection in the three-moduli set {2n+1 − 1, 2n − 1, 2n}. In the suggested design, we offer a new QCA-based design in one layer for sign detection of three-moduli set {2n+1 − 1, 2n − 1, 2n}. It is not only used for arithmetic units of RNS but also applied for cost and performance improvement of the total system. We simulate and analyze the proposed detection method using the QCADesigner simulator. We also compare the cell count, delay, and occupied area. Experimental results showed that the proposed architecture requires 5.60 µm2 of the circuit area, and the delay is decreased.
Literature
1.
go back to reference Bajard, J.-C., Imbert, L.: A full RNS implementation of RSA. Comput. IEEE Trans. 53(6), 769–774 (2004) CrossRef Bajard, J.-C., Imbert, L.: A full RNS implementation of RSA. Comput. IEEE Trans. 53(6), 769–774 (2004) CrossRef
2.
go back to reference Konstantinides, K., Bhaskaran, V.: Monolithic architectures for image processing and compression. IEEE Comput. Graph. Appl. 6, 75–86 (1992) CrossRef Konstantinides, K., Bhaskaran, V.: Monolithic architectures for image processing and compression. IEEE Comput. Graph. Appl. 6, 75–86 (1992) CrossRef
3.
go back to reference Raghu, J., Ashok, B.: An Efficient Fast Sign Detection Algorithm for the RNS Moduli Set, 5(42), 8786–8788 (2016) Raghu, J., Ashok, B.: An Efficient Fast Sign Detection Algorithm for the RNS Moduli Set, 5(42), 8786–8788 (2016)
4.
go back to reference Szabo, N., Tanaka, R.: Residue arithmetic and its applications to computer technology. (1967) ed: McGraw-Hill, New York Szabo, N., Tanaka, R.: Residue arithmetic and its applications to computer technology. (1967) ed: McGraw-Hill, New York
5.
go back to reference Priyanka, G. S., Kumar, K. P.: Implementation of a fast sign detection algorithm for the RNS moduli set Priyanka, G. S., Kumar, K. P.: Implementation of a fast sign detection algorithm for the RNS moduli set
6.
go back to reference Wade, J.: Including all learners: QCA’s approach. Br. J. Special Educ. 26(2), 80–82 (1999) CrossRef Wade, J.: Including all learners: QCA’s approach. Br. J. Special Educ. 26(2), 80–82 (1999) CrossRef
7.
go back to reference Pudi, V., Sridharan, K.: Low complexity design of ripple carry and Brent-Kung adders in QCA. Nanotechnol. IEEE Trans. 11(1), 105–119 (2012) CrossRef Pudi, V., Sridharan, K.: Low complexity design of ripple carry and Brent-Kung adders in QCA. Nanotechnol. IEEE Trans. 11(1), 105–119 (2012) CrossRef
8.
go back to reference Walus, K., Budiman, R.A., Jullien, G.: Split current quantum-dot cellular automata-modeling and simulation. Nanotechnology, IEEE Transactions on 3(2), 249–255 (2004) CrossRef Walus, K., Budiman, R.A., Jullien, G.: Split current quantum-dot cellular automata-modeling and simulation. Nanotechnology, IEEE Transactions on 3(2), 249–255 (2004) CrossRef
9.
go back to reference Norouzi, A., Heikalabad, S.R.: Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photon. Netw. Commun. 38(2), 231–243 (2019) CrossRef Norouzi, A., Heikalabad, S.R.: Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photon. Netw. Commun. 38(2), 231–243 (2019) CrossRef
10.
go back to reference Bernstein, G.H., et al.: Magnetic QCA systems. Microelectron. J. 36(7), 619–624 (2005) CrossRef Bernstein, G.H., et al.: Magnetic QCA systems. Microelectron. J. 36(7), 619–624 (2005) CrossRef
11.
go back to reference Sridharan, K., Pudi, V.: Design of basic digital circuits in QCA, in design of arithmetic circuits in quantum dot cellular automata nanotechnology: Springer, (2015) pp. 19–26 Sridharan, K., Pudi, V.: Design of basic digital circuits in QCA, in design of arithmetic circuits in quantum dot cellular automata nanotechnology: Springer, (2015) pp. 19–26
12.
go back to reference Walus, K., Jullien, G., Dimitrov, V.:Computer arithmetic structures for quantum cellular automata, in signals, systems and computers, 2004. Conference record of the thirty-seventh asilomar conference on, (2003) vol. 2, pp. 1435–1439: IEEE. Walus, K., Jullien, G., Dimitrov, V.:Computer arithmetic structures for quantum cellular automata, in signals, systems and computers, 2004. Conference record of the thirty-seventh asilomar conference on, (2003) vol. 2, pp. 1435–1439: IEEE.
13.
go back to reference Henderson, S.C., Johnson, E.W., Janulis, J.R., Tougaw, P.D.: Incorporating standard CMOS design process methodologies into the QCA logic design process. Nanotechnol. IEEE Trans. 3(1), 2–9 (2004) CrossRef Henderson, S.C., Johnson, E.W., Janulis, J.R., Tougaw, P.D.: Incorporating standard CMOS design process methodologies into the QCA logic design process. Nanotechnol. IEEE Trans. 3(1), 2–9 (2004) CrossRef
14.
go back to reference Das, J.C., De, D.: Reversible binary subtractor design using quantum dot-cellular automata. Front. Inform. Technol. Electron. Eng. 18(9), 1416–1429 (2017) CrossRef Das, J.C., De, D.: Reversible binary subtractor design using quantum dot-cellular automata. Front. Inform. Technol. Electron. Eng. 18(9), 1416–1429 (2017) CrossRef
15.
go back to reference Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. Nanotechnol. IEEE Trans. 14(3), 497–504 (2015) CrossRef Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. Nanotechnol. IEEE Trans. 14(3), 497–504 (2015) CrossRef
16.
go back to reference H. Aiken and W. Semon, "Advanced digital computer logic," Comput. Lab., Harvard Univ., Cambridge, Mass., Rep. WADC TR-59–472, 1959. H. Aiken and W. Semon, "Advanced digital computer logic," Comput. Lab., Harvard Univ., Cambridge, Mass., Rep. WADC TR-59–472, 1959.
17.
go back to reference Flores, I.: The logic of computer arithmetic, Prentice-Hall, Inc., (1963) Flores, I.: The logic of computer arithmetic, Prentice-Hall, Inc., (1963)
18.
go back to reference Garner, H.L.: The residue number system. Electron. Comput. IRE Trans. 2, 140–147 (1959) CrossRef Garner, H.L.: The residue number system. Electron. Comput. IRE Trans. 2, 140–147 (1959) CrossRef
19.
go back to reference A. Svoboda and M. Valach, "Computer Progress in Czechoslovakia II, The Numerical Systems of Residue Classes," in Digital Information Processor: Wiley, 1962. A. Svoboda and M. Valach, "Computer Progress in Czechoslovakia II, The Numerical Systems of Residue Classes," in Digital Information Processor: Wiley, 1962.
20.
go back to reference Molahosseini, A.S., Navi, K., Dadkhah, C., Kavehei, O., Timarchi, S.: Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. Circuits Syst. I Regul. Pap. IEEE Trans. 57(4), 823–835 (2010) MathSciNetCrossRef Molahosseini, A.S., Navi, K., Dadkhah, C., Kavehei, O., Timarchi, S.: Efficient reverse converter designs for the new 4-moduli sets and based on new CRTs. Circuits Syst. I Regul. Pap. IEEE Trans. 57(4), 823–835 (2010) MathSciNetCrossRef
21.
go back to reference Wang, W., Swamy, M., Ahmad, M. O.: RNS application for digital image processing, in system-on-chip for real-time applications, 2004. Proceedings. 4th IEEE international workshop on, (2004), pp. 77–80: IEEE Wang, W., Swamy, M., Ahmad, M. O.: RNS application for digital image processing, in system-on-chip for real-time applications, 2004. Proceedings. 4th IEEE international workshop on, (2004), pp. 77–80: IEEE
22.
go back to reference Radhakrishnan, D., Preethy, A.: A 32 Bit multiplier architecture using Galois fields (1998), The 2nd European Parallel and Distributed Syst. Conf., Vienna, Austria, July 1998 Radhakrishnan, D., Preethy, A.: A 32 Bit multiplier architecture using Galois fields (1998), The 2nd European Parallel and Distributed Syst. Conf., Vienna, Austria, July 1998
23.
go back to reference Hariri, A., Navi, K., Rastegar, R.: A simplified modulo (2 n-1) squaring scheme for residue number system, in computer as a tool, 2005. Eurocon 2005. The international conference on, 2005, vol. 1, pp. 615–618: IEEE Hariri, A., Navi, K., Rastegar, R.: A simplified modulo (2 n-1) squaring scheme for residue number system, in computer as a tool, 2005. Eurocon 2005. The international conference on, 2005, vol. 1, pp. 615–618: IEEE
24.
go back to reference Szabo, N.: Sign detection in nonredundant residue systems. IEEE Trans. on Electron. Comput. 4(EC-11), 494–500 (1962) MathSciNetCrossRef Szabo, N.: Sign detection in nonredundant residue systems. IEEE Trans. on Electron. Comput. 4(EC-11), 494–500 (1962) MathSciNetCrossRef
25.
go back to reference Al-Radadi, E., Siy, P.: RNS sign detector based on Chinese remainder theorem II (CRT II). Comput. Math. Appl. 46(10), 1559–1570 (2003) MathSciNetCrossRef Al-Radadi, E., Siy, P.: RNS sign detector based on Chinese remainder theorem II (CRT II). Comput. Math. Appl. 46(10), 1559–1570 (2003) MathSciNetCrossRef
26.
go back to reference Akkal, M., Siy, P.: Optimum RNS sign detection algorithm using MRC-II with special moduli set. J. Syst. Architect. 54(10), 911–918 (2008) CrossRef Akkal, M., Siy, P.: Optimum RNS sign detection algorithm using MRC-II with special moduli set. J. Syst. Architect. 54(10), 911–918 (2008) CrossRef
27.
28.
go back to reference Mohan, P.V.A.: RNS-to-binary converter for a new three-moduli set {2 n+ 1–1, 2 n, 2 n− 1}. Circuits Syst. Exp. Briefs IEEE Trans. on 54(9), 775–779 (2007) MathSciNetCrossRef Mohan, P.V.A.: RNS-to-binary converter for a new three-moduli set {2 n+ 1–1, 2 n, 2 n− 1}. Circuits Syst. Exp. Briefs IEEE Trans. on 54(9), 775–779 (2007) MathSciNetCrossRef
29.
go back to reference Dajani, O.: Emerging design methodology and its implementation through RNS and QCA. Electrical Engineering, Wayne State University, Detroit, Michigan, PhD (2013) Dajani, O.: Emerging design methodology and its implementation through RNS and QCA. Electrical Engineering, Wayne State University, Detroit, Michigan, PhD (2013)
30.
go back to reference Molahosseini, A. S., Sorouri, S., Zarandi, A. A. E.: Research challenges in next-generation residue number system architectures, in 2012 7th international conference on computer science & education (ICCSE), pp. 1658–1661 (2012) IEEE Molahosseini, A. S., Sorouri, S., Zarandi, A. A. E.: Research challenges in next-generation residue number system architectures, in 2012 7th international conference on computer science & education (ICCSE), pp. 1658–1661 (2012) IEEE
31.
go back to reference Das, J.C., De, D., Mondal, S.P., Ahmadian, A., Ghaemi, F., Senu, N.: QCA based error detection circuit for nano communication network. IEEE Access 7, 67355–67366 (2019) CrossRef Das, J.C., De, D., Mondal, S.P., Ahmadian, A., Ghaemi, F., Senu, N.: QCA based error detection circuit for nano communication network. IEEE Access 7, 67355–67366 (2019) CrossRef
32.
go back to reference Kazemifard, N., Navi, K.: Implementing RNS arithmetic unit through single electron quantum-dot cellular automata. Int. J. Comput. Appl. 163(4), 20 (2017) Kazemifard, N., Navi, K.: Implementing RNS arithmetic unit through single electron quantum-dot cellular automata. Int. J. Comput. Appl. 163(4), 20 (2017)
33.
go back to reference Xu, M., Bian, Z., Yao, R.: Fast sign detection algorithm for the RNS moduli set. Very Large Scale Integr. (VLSI) Syst. IEEE Trans. 23(2), 379–383 (2015) CrossRef Xu, M., Bian, Z., Yao, R.: Fast sign detection algorithm for the RNS moduli set. Very Large Scale Integr. (VLSI) Syst. IEEE Trans. 23(2), 379–383 (2015) CrossRef
34.
go back to reference Piestrak, S.J.: Design of residue generators and multioperand modular adders using carry-save adders. IEEE Trans. Comput. 43(1), 68–77 (1994) CrossRef Piestrak, S.J.: Design of residue generators and multioperand modular adders using carry-save adders. IEEE Trans. Comput. 43(1), 68–77 (1994) CrossRef
35.
go back to reference Zimmermann, R.: Efficient VLSI implementation of modulo (2 n±1) addition and multiplication, in Computer arithmetic, 1999. Proceedings. 14th IEEE symposium on, pp. 158–167 (1999), IEEE Zimmermann, R.: Efficient VLSI implementation of modulo (2 n±1) addition and multiplication, in Computer arithmetic, 1999. Proceedings. 14th IEEE symposium on, pp. 158–167 (1999), IEEE
36.
go back to reference Furuya, K.: Design methodologies of comparators based on parallel hardware algorithms, in 2010 10th international symposium on communications and information technologies, (2010) Furuya, K.: Design methodologies of comparators based on parallel hardware algorithms, in 2010 10th international symposium on communications and information technologies, (2010)
37.
go back to reference Ulman, Z.D.: Sign detection and implicit-explicit conversion of numbers in residue arithmetic. IEEE Trans. Comput. 6, 590–594 (1983) CrossRef Ulman, Z.D.: Sign detection and implicit-explicit conversion of numbers in residue arithmetic. IEEE Trans. Comput. 6, 590–594 (1983) CrossRef
38.
go back to reference Van Vu, T.: Efficient implementations of the Chinese remainder theorem for sign detection and residue decoding. Comput. IEEE Trans. 100(7), 646–651 (1985) MATH Van Vu, T.: Efficient implementations of the Chinese remainder theorem for sign detection and residue decoding. Comput. IEEE Trans. 100(7), 646–651 (1985) MATH
Metadata
Title
A new sign detection design for the residue number system based on quantum-dot cellular automata
Authors
Lianbing Deng
Wenjian Liu
Daming Li
Bayan Omar Mohammed
Publication date
22-06-2021
Publisher
Springer US
Published in
Photonic Network Communications / Issue 1/2021
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00941-z