Skip to main content
Top

2024 | OriginalPaper | Chapter

A New Upper Bound for the Site Percolation Threshold of the Square Lattice

Authors : John C. Wierman, Samuel P. Oberly

Published in: Combinatorics, Graph Theory and Computing

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The upper bound for the site percolation threshold of the square lattice is reduced from 0.679492 to 0.666894, providing the first improvement since 1995. The bound is obtained by using the substitution method with new computational reductions which make calculations for site models more efficient. The substitution method is applied, comparing the site percolation model on a self-matching lattice to the square lattice site percolation model in a two-stage process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Beinecke, Lowell W. (1968) Derived graphs and digraphs. In Beiträge zur Graphentheorie, Tuebner, 17–33. Beinecke, Lowell W. (1968) Derived graphs and digraphs. In Beiträge zur Graphentheorie, Tuebner, 17–33.
2.
go back to reference van den Berg, J. and Ermakov, A. (1996) A new lower bound for the critical probability of site percolation on the square lattice. Random Structures and Algorithms, 8, 199–212.MathSciNetCrossRef van den Berg, J. and Ermakov, A. (1996) A new lower bound for the critical probability of site percolation on the square lattice. Random Structures and Algorithms, 8, 199–212.MathSciNetCrossRef
3.
go back to reference Bollobás, Béla and Riordan, Oliver (2006) Percolation. Cambridge University Press.CrossRef Bollobás, Béla and Riordan, Oliver (2006) Percolation. Cambridge University Press.CrossRef
4.
go back to reference Higuchi, Y. (1982) Coexistence of infinite (*) clusters: A remark on the square lattice site percolation. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandete Gebeite61, 75–81.MathSciNetCrossRef Higuchi, Y. (1982) Coexistence of infinite (*) clusters: A remark on the square lattice site percolation. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandete Gebeite61, 75–81.MathSciNetCrossRef
5.
go back to reference Kesten, Harry (1980) The critical probability of bond percolation on the square lattice is \(1/2\). Communications in Mathematical Physics74, 41–59.MathSciNetCrossRef Kesten, Harry (1980) The critical probability of bond percolation on the square lattice is \(1/2\). Communications in Mathematical Physics74, 41–59.MathSciNetCrossRef
6.
go back to reference Kesten, Harry (1982) Percolation Theory for Mathematicians, Birkhäuser, Boston.CrossRef Kesten, Harry (1982) Percolation Theory for Mathematicians, Birkhäuser, Boston.CrossRef
7.
go back to reference May, William D. and Wierman, John C. (2005) Using symmetry to improve percolation threshold bounds. Combinatorics, Probability and Computing14, 549–566.MathSciNetCrossRef May, William D. and Wierman, John C. (2005) Using symmetry to improve percolation threshold bounds. Combinatorics, Probability and Computing14, 549–566.MathSciNetCrossRef
8.
go back to reference May, William D. and Wierman, John C. 2007 The application of non-crossing partitions to improving percolation threshold bounds. Combinatorics, Probability and Computing17, 285–307.MathSciNetCrossRef May, William D. and Wierman, John C. 2007 The application of non-crossing partitions to improving percolation threshold bounds. Combinatorics, Probability and Computing17, 285–307.MathSciNetCrossRef
9.
go back to reference Sykes, M. F. and Essam, J. W. (1964) Exact critical probabilities for site and bond problems in two dimensions. Journal of Mathematical Physics5, 1117–1127.MathSciNetCrossRef Sykes, M. F. and Essam, J. W. (1964) Exact critical probabilities for site and bond problems in two dimensions. Journal of Mathematical Physics5, 1117–1127.MathSciNetCrossRef
10.
go back to reference Tóth, Balint (1985) A lower bound for the critical probability of the square lattice percolation. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandete Gebeite69, 19–22.MathSciNetCrossRef Tóth, Balint (1985) A lower bound for the critical probability of the square lattice percolation. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandete Gebeite69, 19–22.MathSciNetCrossRef
11.
go back to reference Wierman, John C. (1995) Substitution method critical probability bounds for the square lattice site percolation model. Combinatorics, Probability, and Computing, 4, 181–188.MathSciNetCrossRef Wierman, John C. (1995) Substitution method critical probability bounds for the square lattice site percolation model. Combinatorics, Probability, and Computing, 4, 181–188.MathSciNetCrossRef
12.
go back to reference Wierman John C., Yu Gaoran, and Huang, T. (2015) A disproof of Tsallis’ bond percolation threshold for the kagome lattice. Electronic Journal of Combinatorics22, P2.52.MathSciNetCrossRef Wierman John C., Yu Gaoran, and Huang, T. (2015) A disproof of Tsallis’ bond percolation threshold for the kagome lattice. Electronic Journal of Combinatorics22, P2.52.MathSciNetCrossRef
13.
go back to reference Wierman, John C. (2016) Tight bounds for the bond percolation threshold of the \((3,12^2)\) lattice. Journal of Physics A49, 475002. Wierman, John C. (2016) Tight bounds for the bond percolation threshold of the \((3,12^2)\) lattice. Journal of Physics A49, 475002.
14.
go back to reference Wierman, John C. (2017) Strict inequalities between bond percolation thresholds of Archimedean lattices. Congressus Numerantium229, 231–244.MathSciNet Wierman, John C. (2017) Strict inequalities between bond percolation thresholds of Archimedean lattices. Congressus Numerantium229, 231–244.MathSciNet
15.
go back to reference Zuev, S. A. (1987) Percolation threshold bounds for the square lattice. Theory of Probability and its Applications (In Russian) 32, 606–609 (551–553 in translation). Zuev, S. A. (1987) Percolation threshold bounds for the square lattice. Theory of Probability and its Applications (In Russian) 32, 606–609 (551–553 in translation).
Metadata
Title
A New Upper Bound for the Site Percolation Threshold of the Square Lattice
Authors
John C. Wierman
Samuel P. Oberly
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-62166-6_9

Premium Partner