Skip to main content
Top
Published in: Wireless Networks 4/2019

07-11-2017

A new variant of cuckoo search algorithm with self adaptive parameters to solve complex RFID network planning problem

Authors: Atef Jaballah, Aref Meddeb

Published in: Wireless Networks | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the paradigm of the Internet of things, each object in the physical world can be remotely identified, controlled, and located through networks. Thanks to their low cost and their small form, the Radio frequency identification (RFID) tags are frequently used to tag objects . The tags or objects are often distributed in large geographic areas. Due to the limit of the interrogation range of RFID readers, multiple readers should be deployed to read the information stored on all tags. The major challenge in an RFID network design is to find the optimal placement and parameters of readers in order to meet the essential requirements of an RFID system such as coverage, load balance and interference between readers. This challenge has led to a new research area known in the literature as the RFID network planning problem. This problem is characterized by a large number of constraints as well as numerous objectives and it proves to be NP-hard. In this paper, we develop a novel optimization algorithm, namely the self adaptive cuckoo search (SACS) algorithm, to solve this complex problem. In the SACS algorithm, the control parameters of the cuckoo search (CS) algorithm are adjusted dynamically in real time. The self-adaptation phenomenon allows the evolutionary algorithm to be more flexible and closer to natural evolution. The experimental results on 13 standard benchmark functions demonstrate that the proposed algorithm is more efficient than five adaptive variants of the CS algorithm. In the second part of the paper, the SACS algorithm is also used to solve three difficult RFID network planning instances. The simulation studies show that the SACS algorithm obtains better solutions for the RFID network planning problem than the original CS, four adaptive CS variants, the GA and the PSO in terms of optimization and robustness. To test the effectiveness of the SACS algorithm on a real problem, a case study is carried out.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, J. (2014). RFID as a key enabler of the internet of things: Localization and communication. PhD thesis, Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science., Massachusetts Institute of Technology. Wang, J. (2014). RFID as a key enabler of the internet of things: Localization and communication. PhD thesis, Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science., Massachusetts Institute of Technology.
3.
go back to reference Hanning, C., Yunlong, Z., Kunyuan, H., & Tao, K. (2011). RFID network planning using a multi-swarm optimizer. Journal of Network and Computer Applications, 34(3), 888–901.CrossRef Hanning, C., Yunlong, Z., Kunyuan, H., & Tao, K. (2011). RFID network planning using a multi-swarm optimizer. Journal of Network and Computer Applications, 34(3), 888–901.CrossRef
4.
go back to reference Gong, Y., Shen, M., Zhang, J., Kaynak, O., Chen, W., & Zhan, Z. (2012). Optimizing RFID network planning by using a particle swarm optimization algorithm with redundant reader elimination. IEEE Transactions on Industrial Informatics, 8(4), 900–912.CrossRef Gong, Y., Shen, M., Zhang, J., Kaynak, O., Chen, W., & Zhan, Z. (2012). Optimizing RFID network planning by using a particle swarm optimization algorithm with redundant reader elimination. IEEE Transactions on Industrial Informatics, 8(4), 900–912.CrossRef
5.
go back to reference Gao, Y., Hu, X., Liu, H., & Feng, Y. (2010). Multiobjective estimation of distribution algorithm combined with PSO for RFID network optimization. In 2010 international conference on measuring technology and mechatronics automation (ICMTMA), (pp. 736–739). Gao, Y., Hu, X., Liu, H., & Feng, Y. (2010). Multiobjective estimation of distribution algorithm combined with PSO for RFID network optimization. In 2010 international conference on measuring technology and mechatronics automation (ICMTMA), (pp. 736–739).
7.
go back to reference Nebojsa Bacanin, MT., & Strumberger, I. (2015). RFID network planning by ABC algorithm hybridized with heuristic for initial number and locations of readers. In 17th UKSIM-AMSS international conference on modelling and simulation, (pp. 39–44). Nebojsa Bacanin, MT., & Strumberger, I. (2015). RFID network planning by ABC algorithm hybridized with heuristic for initial number and locations of readers. In 17th UKSIM-AMSS international conference on modelling and simulation, (pp. 39–44).
8.
go back to reference Guan, Q., Liu, Y., Yang, Y., & Yu, W. (2006). Genetic approach for network planning in the RFID systems. In Sixth International Conference on Intelligent Systems Design and Applications, 2006. ISDA ’06 (Vol. 2, pp. 567–572). Guan, Q., Liu, Y., Yang, Y., & Yu, W. (2006). Genetic approach for network planning in the RFID systems. In Sixth International Conference on Intelligent Systems Design and Applications, 2006. ISDA ’06 (Vol. 2, pp. 567–572).
9.
go back to reference Yang, Y., Wu, Y., Xia, M., & Qin, Z. (2009). A RFID network planning method based on genetic algorithm. In International conference on networks security, wireless communications and trusted computing (pp. 534–537). Yang, Y., Wu, Y., Xia, M., & Qin, Z. (2009). A RFID network planning method based on genetic algorithm. In International conference on networks security, wireless communications and trusted computing (pp. 534–537).
10.
go back to reference Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 39(4), 315–346.CrossRef Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 39(4), 315–346.CrossRef
11.
go back to reference Yang, X., & Deb, S. (2009). Cuckoo search via lévy flights. In World congress on nature and biologically inspired computing, NaBIC 2009, 9–11 December 2009, Coimbatore, India (Vol. 4, pp. 210–214). Yang, X., & Deb, S. (2009). Cuckoo search via lévy flights. In World congress on nature and biologically inspired computing, NaBIC 2009, 9–11 December 2009, Coimbatore, India (Vol. 4, pp. 210–214).
12.
go back to reference Yang, X., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.CrossRefMATH Yang, X., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.CrossRefMATH
13.
go back to reference Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRef
14.
go back to reference Chen, H., Zhu, Y., & Hu, K. (2010). Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning. Applied Soft Computing, 10(2), 539–547.CrossRef Chen, H., Zhu, Y., & Hu, K. (2010). Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning. Applied Soft Computing, 10(2), 539–547.CrossRef
15.
go back to reference Ma, L., Hu, K., Zhu, Y., & Chen, H. (2014). Cooperative artificial bee colony algorithm for multi-objective RFID network planning. Journal of Network and Computer Applications, 42, 143–162.CrossRef Ma, L., Hu, K., Zhu, Y., & Chen, H. (2014). Cooperative artificial bee colony algorithm for multi-objective RFID network planning. Journal of Network and Computer Applications, 42, 143–162.CrossRef
16.
go back to reference Zhao, C., Wu, C., Chai, J., Wang, X., Yang, X., Lee, J. M., et al. (2017). Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty. Applied Soft Computing, 55, 549–564.CrossRef Zhao, C., Wu, C., Chai, J., Wang, X., Yang, X., Lee, J. M., et al. (2017). Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty. Applied Soft Computing, 55, 549–564.CrossRef
17.
go back to reference Lu, S., & Yu, S. (2014). A fuzzy k-coverage approach for RFID network planning using plant growth simulation algorithm. Journal of Network and Computer Applications, 39, 280–291.CrossRef Lu, S., & Yu, S. (2014). A fuzzy k-coverage approach for RFID network planning using plant growth simulation algorithm. Journal of Network and Computer Applications, 39, 280–291.CrossRef
18.
go back to reference Zhang, T., & Liu, J. (2017). An efficient and fast kinematics-based algorithm for RFID network planning. Computer Networks, 121, 13–24.CrossRef Zhang, T., & Liu, J. (2017). An efficient and fast kinematics-based algorithm for RFID network planning. Computer Networks, 121, 13–24.CrossRef
19.
go back to reference Tuba Milan, BM., & Bacanin Nebojsa (2015). Fireworks algorithm for RFID network planning problem. In 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA) (pp. 440–444). Tuba Milan, BM., & Bacanin Nebojsa (2015). Fireworks algorithm for RFID network planning problem. In 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA) (pp. 440–444).
20.
go back to reference Bacanin Nebojsa, JR., & Tuba Milan (2015). Hierarchical multiobjective RFID network planning using firefly algorithm. In 2015 international conference on information and communication technology research (ICTRC) (pp 282–285). Bacanin Nebojsa, JR., & Tuba Milan (2015). Hierarchical multiobjective RFID network planning using firefly algorithm. In 2015 international conference on information and communication technology research (ICTRC) (pp 282–285).
21.
go back to reference Tuba Milan, BN. (2015). Hybridized bat algorithm for multi-objective radio frequency identification (RFID) network planning. In 2015 IEEE congress on evolutionary computation (CEC) (pp 499–506). Tuba Milan, BN. (2015). Hybridized bat algorithm for multi-objective radio frequency identification (RFID) network planning. In 2015 IEEE congress on evolutionary computation (CEC) (pp 499–506).
22.
go back to reference Bhattacharya, I., & Roy, U. K. (2010). Optimal placement of readers in an RFID network using particle swarm optimization. International Journal of Computer Networks and Communications, 2(6), 225–234.CrossRef Bhattacharya, I., & Roy, U. K. (2010). Optimal placement of readers in an RFID network using particle swarm optimization. International Journal of Computer Networks and Communications, 2(6), 225–234.CrossRef
23.
go back to reference Yang, X., & Deb, S. (2014). Cuckoo search: Recent advances and applications. Neural Computing and Applications, 24(1), 169–174.CrossRef Yang, X., & Deb, S. (2014). Cuckoo search: Recent advances and applications. Neural Computing and Applications, 24(1), 169–174.CrossRef
24.
go back to reference Shehab, M., Khader, A. T., & Al-Betar, M. A. (2017). A survey on applications and variants of the cuckoo search algorithm. Applied Soft Computing, 61, 1041–1059. Shehab, M., Khader, A. T., & Al-Betar, M. A. (2017). A survey on applications and variants of the cuckoo search algorithm. Applied Soft Computing, 61, 1041–1059.
25.
go back to reference Eiben, A., & Smit, S. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19–31.CrossRef Eiben, A., & Smit, S. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19–31.CrossRef
26.
go back to reference Gandino, F., Ferrero, R., Montrucchio, B., & Rebaudengo, M. (2013). Cuckoo search: A new nature-inspired optimization method for phase equilibrium calculations. Fluid Phase Equilibria, 337, 191–200.CrossRef Gandino, F., Ferrero, R., Montrucchio, B., & Rebaudengo, M. (2013). Cuckoo search: A new nature-inspired optimization method for phase equilibrium calculations. Fluid Phase Equilibria, 337, 191–200.CrossRef
27.
go back to reference Valian, E., Tavakoli, S., Mohanna, S., & Haghi, A. (2013). Improved cuckoo search for reliability optimization problems. Computers & Industrial Engineering, 64(1), 459–468.CrossRef Valian, E., Tavakoli, S., Mohanna, S., & Haghi, A. (2013). Improved cuckoo search for reliability optimization problems. Computers & Industrial Engineering, 64(1), 459–468.CrossRef
28.
go back to reference Zhang, Z., & Chen, Y. (2014). An improved cuckoo search algorithm with adaptive method. In 2014 seventh international joint conference on computational sciences and optimization (CSO) (pp. 204–207). Zhang, Z., & Chen, Y. (2014). An improved cuckoo search algorithm with adaptive method. In 2014 seventh international joint conference on computational sciences and optimization (CSO) (pp. 204–207).
29.
go back to reference Zhao, H., Jiang, Y., Wang, T., Cui, W., & Li, X. (2016). A method based on the adaptive cuckoo search algorithm for endmember extraction from hyperspectral remote sensing images. Remote Sensing Letters, 7(3), 289–297.CrossRef Zhao, H., Jiang, Y., Wang, T., Cui, W., & Li, X. (2016). A method based on the adaptive cuckoo search algorithm for endmember extraction from hyperspectral remote sensing images. Remote Sensing Letters, 7(3), 289–297.CrossRef
30.
go back to reference Kumar, M. N., & Panda, R. (2016). A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition. Applied Soft Computing, 38, 661–675.CrossRef Kumar, M. N., & Panda, R. (2016). A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition. Applied Soft Computing, 38, 661–675.CrossRef
31.
go back to reference Jia, B., Yu, B., Wu, Q., Wei, C., & Law, R. (2016). Adaptive affinity propagation method based on improved cuckoo search. Knowledge-Based Systems, 111, 27–35.CrossRef Jia, B., Yu, B., Wu, Q., Wei, C., & Law, R. (2016). Adaptive affinity propagation method based on improved cuckoo search. Knowledge-Based Systems, 111, 27–35.CrossRef
33.
go back to reference Katzela, I., & Naghshineh, M. (1996). Channel assignment schemes for cellular mobile telecommunication systems. IEEE Personal Communications, 3, 10–31.CrossRef Katzela, I., & Naghshineh, M. (1996). Channel assignment schemes for cellular mobile telecommunication systems. IEEE Personal Communications, 3, 10–31.CrossRef
34.
go back to reference Chen, H., Zhu, Y., Hu, K., & Niu, B. (2007). Application of a multi-species optimizer in ubiquitous computing for RFID networks scheduling. In Third international conference on natural computation (ICNC 2007) (pp. 420–425). Chen, H., Zhu, Y., Hu, K., & Niu, B. (2007). Application of a multi-species optimizer in ubiquitous computing for RFID networks scheduling. In Third international conference on natural computation (ICNC 2007) (pp. 420–425).
35.
go back to reference Dong, Q., Shukla, A., Shrivastava, V., Agrawal, D., Banerjee, S., & Kar, K. (2007). Load balancing in large-scale RFID systems. In INFOCOM 2007. 26th IEEE international conference on computer communications. IEEE (pp. 2281–2285). Dong, Q., Shukla, A., Shrivastava, V., Agrawal, D., Banerjee, S., & Kar, K. (2007). Load balancing in large-scale RFID systems. In INFOCOM 2007. 26th IEEE international conference on computer communications. IEEE (pp. 2281–2285).
36.
go back to reference Gandino, F., Ferrero, R., Montrucchio, B., & Rebaudengo, M. (2011). Probabilistic dcs: An RFID reader-to-reader anti-collision protocol. Journal of Network and Computer Applications, 34(3), 821–832.CrossRef Gandino, F., Ferrero, R., Montrucchio, B., & Rebaudengo, M. (2011). Probabilistic dcs: An RFID reader-to-reader anti-collision protocol. Journal of Network and Computer Applications, 34(3), 821–832.CrossRef
37.
go back to reference Eom, J. B., Yim, S. B., & Lee, T. J. (2009). An efficient reader anticollision algorithm in dense RFID networks with mobile RFID readers. IEEE Transactions on Industrial Electronics, 56(7), 2326–2336.CrossRef Eom, J. B., Yim, S. B., & Lee, T. J. (2009). An efficient reader anticollision algorithm in dense RFID networks with mobile RFID readers. IEEE Transactions on Industrial Electronics, 56(7), 2326–2336.CrossRef
Metadata
Title
A new variant of cuckoo search algorithm with self adaptive parameters to solve complex RFID network planning problem
Authors
Atef Jaballah
Aref Meddeb
Publication date
07-11-2017
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1616-9

Other articles of this Issue 4/2019

Wireless Networks 4/2019 Go to the issue