Skip to main content
Top
Published in: Computational Mechanics 2/2023

11-05-2023 | Original Paper

A non-intrusive approach for physics-constrained learning with application to fuel cell modeling

Authors: Vishal Srivastava, Valentin Sulzer, Peyman Mohtat, Jason B. Siegel, Karthik Duraisamy

Published in: Computational Mechanics | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A data-driven model augmentation framework, referred to as weakly-coupled Integrated Inference and Machine Learning (IIML), is presented to improve the predictive accuracy of physical models. In contrast to parameter calibration, this work seeks corrections to the structure of the model by (a) inferring augmentation fields that are consistent with the underlying model, and (b) transforming these fields into corrective model forms. The proposed approach couples the inference and learning steps in a weak sense via an alternating optimization approach. This coupling ensures that the augmentation fields remain learnable and maintain consistent functional relationships with local modeled quantities across the training dataset. An iterative solution procedure is presented in this paper, removing the need to embed the augmentation function during the inference process. This framework is used to infer an augmentation introduced within a polymer electrolyte membrane fuel cell (PEMFC) model using a small amount of training data (from only 14 training cases). These training cases belong to a dataset consisting of high-fidelity simulation data obtained from a high-fidelity model of a first generation Toyota Mirai. All cases in this dataset are characterized by different inflow and outflow conditions on the same geometry. When tested on 1224 different configurations, the inferred augmentation significantly improves the predictive accuracy for a wide range of physical conditions. Predictions and available data for the current density distribution are also compared to demonstrate the predictive capability of the model for quantities of interest which were not involved in the inference process. The results demonstrate that the weakly-coupled IIML framework offers sophisticated and robust model augmentation capabilities without requiring extensive changes to the numerical solver.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Schmelzer M, Dwight RP, Cinnella P (2020) Discovery of algebraic Reynolds-stress models using sparse symbolic regression. Flow Turbul Combust 104(2):579–603CrossRef Schmelzer M, Dwight RP, Cinnella P (2020) Discovery of algebraic Reynolds-stress models using sparse symbolic regression. Flow Turbul Combust 104(2):579–603CrossRef
3.
go back to reference Ling J, Kurzawski A, Templeton J (2016) Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J Fluid Mech 807:155–166MathSciNetCrossRefMATH Ling J, Kurzawski A, Templeton J (2016) Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J Fluid Mech 807:155–166MathSciNetCrossRefMATH
5.
go back to reference Singh AP, Medida S, Duraisamy K (2017) Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J 55(7):2215–2227CrossRef Singh AP, Medida S, Duraisamy K (2017) Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J 55(7):2215–2227CrossRef
8.
go back to reference Saïdi IBH, Schmelzer M, Cinnella P, Grasso F (2022) CFD-driven symbolic identification of algebraic Reynolds-stress models. J Comput Phys 457:111037MathSciNetCrossRefMATH Saïdi IBH, Schmelzer M, Cinnella P, Grasso F (2022) CFD-driven symbolic identification of algebraic Reynolds-stress models. J Comput Phys 457:111037MathSciNetCrossRefMATH
9.
go back to reference Waschkowski F, Zhao Y, Sandberg R, Klewicki J (2022) Multi-objective CFD-driven development of coupled turbulence closure models. J Comput Phys 452:110922MathSciNetCrossRefMATH Waschkowski F, Zhao Y, Sandberg R, Klewicki J (2022) Multi-objective CFD-driven development of coupled turbulence closure models. J Comput Phys 452:110922MathSciNetCrossRefMATH
17.
go back to reference Napoli G, Ferraro M, Sergi F, Brunaccini G, Antonucci V (2013) Data driven models for a PEM fuel cell stack performance prediction. Int J Hydrogen Energy 38(26):11628–11638CrossRef Napoli G, Ferraro M, Sergi F, Brunaccini G, Antonucci V (2013) Data driven models for a PEM fuel cell stack performance prediction. Int J Hydrogen Energy 38(26):11628–11638CrossRef
18.
go back to reference Li Z, Outbib R, Hissel D, Giurgea S (2014) Data-driven diagnosis of PEM fuel cell: a comparative study. Control Eng Pract 28:1–12CrossRef Li Z, Outbib R, Hissel D, Giurgea S (2014) Data-driven diagnosis of PEM fuel cell: a comparative study. Control Eng Pract 28:1–12CrossRef
19.
go back to reference Han I-S, Chung C-B (2016) Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: a comparison of artificial neural network and support vector machine. Int J Hydrogen Energy 41(24):10202–10211CrossRef Han I-S, Chung C-B (2016) Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: a comparison of artificial neural network and support vector machine. Int J Hydrogen Energy 41(24):10202–10211CrossRef
20.
go back to reference Ma R, Yang T, Breaz E, Li Z, Briois P, Gao F (2018) Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Appl Energy 231:102–115CrossRef Ma R, Yang T, Breaz E, Li Z, Briois P, Gao F (2018) Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Appl Energy 231:102–115CrossRef
21.
go back to reference Zhu G, Chen W, Lu S, Chen X (2019) Parameter study of high-temperature proton exchange membrane fuel cell using data-driven models. Int J Hydrogen Energy 44(54):28958–28967CrossRef Zhu G, Chen W, Lu S, Chen X (2019) Parameter study of high-temperature proton exchange membrane fuel cell using data-driven models. Int J Hydrogen Energy 44(54):28958–28967CrossRef
22.
go back to reference Sun L, Li G, Hua Q, Jin Y (2020) A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control. Renew Energy 147:1642–1652CrossRef Sun L, Li G, Hua Q, Jin Y (2020) A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control. Renew Energy 147:1642–1652CrossRef
23.
go back to reference Wang B, Xie B, Xuan J, Jiao K (2020) AI-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling. Energy Convers Manag 205:112460CrossRef Wang B, Xie B, Xuan J, Jiao K (2020) AI-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling. Energy Convers Manag 205:112460CrossRef
26.
go back to reference Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138(8):2334–2341CrossRef Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138(8):2334–2341CrossRef
29.
go back to reference Andersson JA, Gillis J, Horn G, Rawlings JB, Diehl M (2019) CasADI: a software framework for nonlinear optimization and optimal control. Math Program Comput 11(1):1–36MathSciNetCrossRefMATH Andersson JA, Gillis J, Horn G, Rawlings JB, Diehl M (2019) CasADI: a software framework for nonlinear optimization and optimal control. Math Program Comput 11(1):1–36MathSciNetCrossRefMATH
30.
go back to reference Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005) SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw (TOMS) 31(3):363–396 Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005) SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw (TOMS) 31(3):363–396
33.
go back to reference Ho J, Pepper N, Dodwell T (2023) Probabilistic machine learning to improve generalisation of data-driven turbulence modelling Ho J, Pepper N, Dodwell T (2023) Probabilistic machine learning to improve generalisation of data-driven turbulence modelling
Metadata
Title
A non-intrusive approach for physics-constrained learning with application to fuel cell modeling
Authors
Vishal Srivastava
Valentin Sulzer
Peyman Mohtat
Jason B. Siegel
Karthik Duraisamy
Publication date
11-05-2023
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 2/2023
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-023-02342-7

Other articles of this Issue 2/2023

Computational Mechanics 2/2023 Go to the issue