Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-07-2015 | Original Paper | Issue 4/2015

Rock Mechanics and Rock Engineering 4/2015

A nonlinear criterion for triaxial strength of inherently anisotropic rocks

Journal:
Rock Mechanics and Rock Engineering > Issue 4/2015
Authors:
Mahendra Singh, N. K. Samadhiya, Ajit Kumar, Vivek Kumar, Bhawani Singh
Important notes

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00603-015-0708-z) contains supplementary material, which is available to authorized users.

Abstract

Rocks encountered at many underground construction sites are laminated and exhibit direction-dependent strength behavior. It is also a well-established fact that the strength varies in a nonlinear manner with confining pressure. There is a need of strength criterion which could capture the nonlinearity as well as the anisotropy in the triaxial strength behavior of the rocks. It is essential that the criterion should be simple and must involve minimum testing to the extent possible. Further, the parameters of the criterion should have wide acceptability among the geotechnical fraternity. In the present study, a nonlinear strength criterion for transversely isotropic rocks is presented. Critical state concept Barton (Int J Rock Mech Mining Sci Geomech Abstr 13(9):255–279, 1976) has been used to define the curvature of the criterion. With a correctly defined curvature and starting from a reference point (UCS), it is possible to accurately assess the triaxial strength for given confining pressure. An experimental study conducted on triaxial strength behavior of three types of anisotropic rocks namely phyllite, slate and orthoquartzite has been discussed. A data base comprising more than 1140 triaxial tests conducted worldwide on anisotropic rocks has been compiled. Statistical evaluation of goodness of fit of the proposed criterion to the data base has been carried out. Further, the predictive capabilities of the proposed criterion have been evaluated by determining the error in estimation of triaxial strength if only few triaxial test data are available for determining the criterion parameters. The data base has also been back analyzed to assess the critical confining pressure for anisotropic rocks. Statistically, the critical confining pressure for anisotropic rocks can be taken nearly equal to 1.25 times the maximum UCS (obtained by applying load either parallel or perpendicular to planes of anisotropy). It is concluded that reasonable estimates of the triaxial strength of anisotropic rock can be made through the proposed criterion using minimum amount of triaxial test data available.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 4/2015

Rock Mechanics and Rock Engineering 4/2015 Go to the issue

Editorial

Editorial