Skip to main content
Top
Published in:

20-08-2022 | Original Paper

A note on subtowers and supertowers of recursive towers of function fields

Authors: M. Chara, H. Navarro, R. Toledano

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we study the problem of constructing non-trivial subtowers and supertowers of recursive towers of function fields over finite fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This means that H is irreducible over an algebraic closure of \(\mathbb {F}_q\) and that \(H(S,T)=H(T,S).\)
 
Literature
1.
go back to reference Anbar, N., Beelen, P., Nguyen, N.: The exact limit of some cubic towers. In: Arithmetic, Geometry, Cryptography and Coding Theory. Contemporary Mathematics, vol. 686, pp. 1–15 (2017) Anbar, N., Beelen, P., Nguyen, N.: The exact limit of some cubic towers. In: Arithmetic, Geometry, Cryptography and Coding Theory. Contemporary Mathematics, vol. 686, pp. 1–15 (2017)
2.
go back to reference Bassa, A., Beelen, P., Garcia, A., Stichtenoth, H.: Towers of function fields over non-prime finite fields. Mosc. Math. J. 15(1), 181–210 (2015)MathSciNetMATH Bassa, A., Beelen, P., Garcia, A., Stichtenoth, H.: Towers of function fields over non-prime finite fields. Mosc. Math. J. 15(1), 181–210 (2015)MathSciNetMATH
3.
go back to reference Bezerra, J., Garcia, A.: A tower with non-Galois steps which attains the Drinfeld–Vladut bound. J. Number Theory 106(1), 142–154 (2004)MathSciNetCrossRefMATH Bezerra, J., Garcia, A.: A tower with non-Galois steps which attains the Drinfeld–Vladut bound. J. Number Theory 106(1), 142–154 (2004)MathSciNetCrossRefMATH
5.
go back to reference Bezerra, J., Garcia, A., Stichtenoth, H.: An explicit tower of function fields over cubic finite fields and Zink’s lower bound. J. Reine Angew. Math. 589, 159–199 (2005)MathSciNetCrossRefMATH Bezerra, J., Garcia, A., Stichtenoth, H.: An explicit tower of function fields over cubic finite fields and Zink’s lower bound. J. Reine Angew. Math. 589, 159–199 (2005)MathSciNetCrossRefMATH
6.
go back to reference Beelen, P., Garcia, A., Stichtenoth, H.: Towards a classification of recursive towers of function fields over finite fields. Finite Fields Appl. 12(1), 56–77 (2006)MathSciNetCrossRefMATH Beelen, P., Garcia, A., Stichtenoth, H.: Towards a classification of recursive towers of function fields over finite fields. Finite Fields Appl. 12(1), 56–77 (2006)MathSciNetCrossRefMATH
8.
go back to reference Dummit, D., Foote, R.: Abstract Algebra, 3rd edn. Wiley, New York (2004)MATH Dummit, D., Foote, R.: Abstract Algebra, 3rd edn. Wiley, New York (2004)MATH
9.
go back to reference Garcia, A., Stichtenoth, H.: A tower of Artin–Schreier extensions of function fields attaining the Drinfeld–Vladut bound. Invent. Math. 121, 211–222 (1995)MathSciNetCrossRefMATH Garcia, A., Stichtenoth, H.: A tower of Artin–Schreier extensions of function fields attaining the Drinfeld–Vladut bound. Invent. Math. 121, 211–222 (1995)MathSciNetCrossRefMATH
10.
go back to reference Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory 61, 248–273 (1996)MathSciNetCrossRefMATH Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory 61, 248–273 (1996)MathSciNetCrossRefMATH
11.
go back to reference Garcia, A., Stichtenoth, H.: Explicit towers of function fields over finite fields. In: Topics in Geometry, Coding Theory and Cryptography, Volume 6 of Algebra and Applications. Springer, Dordrecht, pp. 1–58 (2007) Garcia, A., Stichtenoth, H.: Explicit towers of function fields over finite fields. In: Topics in Geometry, Coding Theory and Cryptography, Volume 6 of Algebra and Applications. Springer, Dordrecht, pp. 1–58 (2007)
12.
go back to reference Garcia, A., Stichtenoth, H., Rück, H.: On tame towers over finite fields. J. Reine Angew. Math. 557, 53–80 (2003)MathSciNetMATH Garcia, A., Stichtenoth, H., Rück, H.: On tame towers over finite fields. J. Reine Angew. Math. 557, 53–80 (2003)MathSciNetMATH
13.
go back to reference Ihara, Y.: Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 721–724 (1982), (1981) Ihara, Y.: Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 721–724 (1982), (1981)
14.
go back to reference Maharaj, H., Wulftange, J.: On the construction of tame towers over finite fields. J. Pure Appl. Algebra 199(1–3), 197–218 (2005)MathSciNetCrossRefMATH Maharaj, H., Wulftange, J.: On the construction of tame towers over finite fields. J. Pure Appl. Algebra 199(1–3), 197–218 (2005)MathSciNetCrossRefMATH
15.
go back to reference Stichtenoth, H.: Algebraic Function Fields and Codes. GTM 254, 2nd edn. Springer, Berlin (2009)CrossRefMATH Stichtenoth, H.: Algebraic Function Fields and Codes. GTM 254, 2nd edn. Springer, Berlin (2009)CrossRefMATH
16.
go back to reference Zieve, M.: An equality between two towers over cubic fields. arXiv:0905.4921 (2009) Zieve, M.: An equality between two towers over cubic fields. arXiv:0905.4921 (2009)
Metadata
Title
A note on subtowers and supertowers of recursive towers of function fields
Authors
M. Chara
H. Navarro
R. Toledano
Publication date
20-08-2022
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 6/2023
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-022-00576-1

Premium Partner