Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2021

03-01-2021 | Research Article-Chemical Engineering

A Note on the Significance of Entropy Generation and Work Fluxes on Humid Air Inside a Solar Still Due to Double-Diffusive Natural Convection

Authors: Abdallah Belghit, Khaoula Ghrissi, Nejib Hidouri

Published in: Arabian Journal for Science and Engineering | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The motion of the humid air inside a solar still is due to double-diffusive natural convection, where convective heat and mass transfer phenomena are encountered. The humid air, an intermediate medium between the evaporating and the condensing surfaces of the solar still, is regarded as a heat engine that absorbs heat from the free surface of the warmed brackish or saline water and converts it into work to carry up the water vapor molecules to the inner surface of the glass cover. Like all heat engines, the humid air work is accompanied by a degraded energy due to the presence of irreversibilities. The aim of the present study is to give answers about the internal irreversibility origins and the associated work fluxes of the humid air inside the solar still due to double-diffusive natural convection. It is for the first time that the internal entropy generation and the work fluxes formulations are developed and investigated for the humid air inside a solar still. It is found that the irreversibility rate due to fluid friction is the major contributor of the total entropy generation for N > 0.3. The increase in the temperature and the concentration gradients enhances the augmentation of all irreversibility rates. The second law efficiency is an important parameter that should be evaluated to assess the system performance. The mean value of the irreversibility percentage is found equal to 6.83%. The reversible and the lost work fluxes increase with the increase in the humid air temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Smakhtin, V.; Revenga, C.; Döll, P.: Taking into Account Environmental Water Requirements in Global-scale Water Resources Assessments. Comprehensive Assessment Research Report 2, Comprehensive Assessment Secretariat. IWMI, Colombo, Sri Lanka, pp. 1–24 (2004). https://doi.org/10.3910/2009.391 Smakhtin, V.; Revenga, C.; Döll, P.: Taking into Account Environmental Water Requirements in Global-scale Water Resources Assessments. Comprehensive Assessment Research Report 2, Comprehensive Assessment Secretariat. IWMI, Colombo, Sri Lanka, pp. 1–24 (2004). https://​doi.​org/​10.​3910/​2009.​391
2.
go back to reference Oki, T.; Kanae, S.: Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006)CrossRef Oki, T.; Kanae, S.: Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006)CrossRef
3.
go back to reference Tiwari, G.N.: Solar Energy-Fundamentals, Design, Modeling and Applications. Narosa Publishing House, New Delhi (2013) Tiwari, G.N.: Solar Energy-Fundamentals, Design, Modeling and Applications. Narosa Publishing House, New Delhi (2013)
4.
go back to reference Cipollina, A.; Micale, G.; Rizzuti, L.: Seawater Desalination: Conventional and Renewable Energy Processes, pp. 131–163. Springer, London (2009) Cipollina, A.; Micale, G.; Rizzuti, L.: Seawater Desalination: Conventional and Renewable Energy Processes, pp. 131–163. Springer, London (2009)
5.
go back to reference Clausius, R.: The Mechanical Theory of Heat with Its Applications to the Steam Engines and to Physical Properties of Body. John Van Voorst, London (1867) Clausius, R.: The Mechanical Theory of Heat with Its Applications to the Steam Engines and to Physical Properties of Body. John Van Voorst, London (1867)
6.
go back to reference Balmer, R.T.: Modern Engineering Thermodynamics. Academic Press, London (2011) Balmer, R.T.: Modern Engineering Thermodynamics. Academic Press, London (2011)
7.
go back to reference Gems, D.; Doonan, R.: Antioxidant defense and aging in C. elegans. Is the oxidative damage theory of aging wrong? Cell Cycle 8(11), 1681–1687 (2009)CrossRef Gems, D.; Doonan, R.: Antioxidant defense and aging in C. elegans. Is the oxidative damage theory of aging wrong? Cell Cycle 8(11), 1681–1687 (2009)CrossRef
8.
go back to reference Kumar, L.; Joseph, R.: Big Ban? A critical review. J. Cosmet. 6, 1533–1547 (2010) Kumar, L.; Joseph, R.: Big Ban? A critical review. J. Cosmet. 6, 1533–1547 (2010)
9.
go back to reference Sandler, S.I.: An Introduction Applied to Statistical Thermodynamics. Wiley, New York (2011) Sandler, S.I.: An Introduction Applied to Statistical Thermodynamics. Wiley, New York (2011)
10.
go back to reference Prigogine, I.: Etude thermodynamique des processus irréversibles, 4th edn. Desoer, Liège (1947) Prigogine, I.: Etude thermodynamique des processus irréversibles, 4th edn. Desoer, Liège (1947)
11.
go back to reference Clayton, J.; Giauque, W.: The heat capacity and entropy of carbon monoxide. J. Am. Chem. Soc. 54, 2610–2626 (1932)CrossRef Clayton, J.; Giauque, W.: The heat capacity and entropy of carbon monoxide. J. Am. Chem. Soc. 54, 2610–2626 (1932)CrossRef
12.
go back to reference Clausius, R.: On a mechanical theorem applicable to heat. Philos. Mag. Ser. 4(40), 122–127 (1870)CrossRef Clausius, R.: On a mechanical theorem applicable to heat. Philos. Mag. Ser. 4(40), 122–127 (1870)CrossRef
13.
go back to reference Black, W.Z.; Hartley, J.G.: Thermodynamics. Harper and Row, Publisher, Inc., New York (1985) Black, W.Z.; Hartley, J.G.: Thermodynamics. Harper and Row, Publisher, Inc., New York (1985)
14.
go back to reference Magherbi, M.; Abbassi, H.; Hidouri, N.; Ben Brahim, A.: Second law analysis in convective heat and mass transfer. Entropy 8(1), 1–17 (2006)MATHCrossRef Magherbi, M.; Abbassi, H.; Hidouri, N.; Ben Brahim, A.: Second law analysis in convective heat and mass transfer. Entropy 8(1), 1–17 (2006)MATHCrossRef
15.
go back to reference Bejan, A.: Advanced Engineering Thermodynamics. Wiley, Hoboken (2006) Bejan, A.: Advanced Engineering Thermodynamics. Wiley, Hoboken (2006)
17.
go back to reference Thiel, G.P.; Lienhard, J.H.: Entropy generation in condensation in the presence of high concentrations of noncondensable gases. Int. J. Heat Mass Transf. 55(19–20), 5133–5147 (2012)CrossRef Thiel, G.P.; Lienhard, J.H.: Entropy generation in condensation in the presence of high concentrations of noncondensable gases. Int. J. Heat Mass Transf. 55(19–20), 5133–5147 (2012)CrossRef
18.
go back to reference Saidi, M.H.; Montazeri, A.: Second law analysis of a magnetohydrodynamic plasma generator. Energy 32, 1603–1616 (2007)CrossRef Saidi, M.H.; Montazeri, A.: Second law analysis of a magnetohydrodynamic plasma generator. Energy 32, 1603–1616 (2007)CrossRef
19.
go back to reference Naphon, P.: Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger. Int. Commun. Heat Mass Transf. 33, 1029–1041 (2006)CrossRef Naphon, P.: Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger. Int. Commun. Heat Mass Transf. 33, 1029–1041 (2006)CrossRef
20.
go back to reference Mchirgui, A.; Hidouri, N.; Magherbi, M.; Ben Brahim, A.: Second law analysis in double diffusive convection through an inclined porous cavity. Comput. Fluids 96, 105–115 (2014)MathSciNetMATHCrossRef Mchirgui, A.; Hidouri, N.; Magherbi, M.; Ben Brahim, A.: Second law analysis in double diffusive convection through an inclined porous cavity. Comput. Fluids 96, 105–115 (2014)MathSciNetMATHCrossRef
21.
go back to reference Haseli, Y.; Dincer, I.; Naterer, G.F.: Entropy generation of vapor condensation in the presence of non-condensable gas in a shell and tube condenser. Int. J. Heat Mass Transf. 51, 1596–1602 (2008)MATHCrossRef Haseli, Y.; Dincer, I.; Naterer, G.F.: Entropy generation of vapor condensation in the presence of non-condensable gas in a shell and tube condenser. Int. J. Heat Mass Transf. 51, 1596–1602 (2008)MATHCrossRef
22.
go back to reference Winkler, C.M.; Chen, T.S.; Minkowycz, W.J.: Film condensation of saturated and superheated vapors along isothermal vertical surfaces in mixed convection. Numer. Heat Transf. Part A Appl. 36(4), 375–393 (2001) Winkler, C.M.; Chen, T.S.; Minkowycz, W.J.: Film condensation of saturated and superheated vapors along isothermal vertical surfaces in mixed convection. Numer. Heat Transf. Part A Appl. 36(4), 375–393 (2001)
23.
go back to reference Yang, S.A.; Hsu, C.H.: Mixed-convection film condensation on a horizontal elliptical tube with uniform surface heat flux. Numer. Heat Transf. Part A Appl. 32(1), 85–95 (1997)CrossRef Yang, S.A.; Hsu, C.H.: Mixed-convection film condensation on a horizontal elliptical tube with uniform surface heat flux. Numer. Heat Transf. Part A Appl. 32(1), 85–95 (1997)CrossRef
24.
go back to reference Yang, S.A.; Li, G.C.; Yang, W.J.: Thermodynamic optimization of free convection film condensation on a horizontal elliptical tube with variable wall temperature. Int. J. Heat Mass Transf. 50, 4607–4613 (2007)MATHCrossRef Yang, S.A.; Li, G.C.; Yang, W.J.: Thermodynamic optimization of free convection film condensation on a horizontal elliptical tube with variable wall temperature. Int. J. Heat Mass Transf. 50, 4607–4613 (2007)MATHCrossRef
25.
go back to reference Daou, K.; Wang, R.Z.; Xia, Z.Z.: Desiccant cooling air conditioning: a review. Renew. Sustain. Energy Rev. 10(2), 55–77 (2006)CrossRef Daou, K.; Wang, R.Z.; Xia, Z.Z.: Desiccant cooling air conditioning: a review. Renew. Sustain. Energy Rev. 10(2), 55–77 (2006)CrossRef
26.
go back to reference Pahlavanzadeh, H.; Nooriasl, P.: Entropy generation in liquid desiccant dehumidification system. Energy Procedia 14, 1855–1860 (2012)CrossRef Pahlavanzadeh, H.; Nooriasl, P.: Entropy generation in liquid desiccant dehumidification system. Energy Procedia 14, 1855–1860 (2012)CrossRef
27.
go back to reference Rashidi, S.; Yang, L.; Khoosh-Ahang, A.; Jing, D.; Mahian, O.: Entropy generation analysis of different solar thermal systems. Environ. Sci. Pollut. Res. 27, 20699–20724 (2020)CrossRef Rashidi, S.; Yang, L.; Khoosh-Ahang, A.; Jing, D.; Mahian, O.: Entropy generation analysis of different solar thermal systems. Environ. Sci. Pollut. Res. 27, 20699–20724 (2020)CrossRef
28.
go back to reference Rashidi, S.; Esfahani, J.A.: Spatial entropy generation analysis for the design improvement of a single solar still, AIChE. Environ. Prog. Sustain. Energy 37(3), 1112–1120 (2018)CrossRef Rashidi, S.; Esfahani, J.A.: Spatial entropy generation analysis for the design improvement of a single solar still, AIChE. Environ. Prog. Sustain. Energy 37(3), 1112–1120 (2018)CrossRef
29.
go back to reference Alipanah, F.; Rahbar, N.: CFD simulation and second law analysis of weir-type cascade solar stills with different number and dimensions of steps. Desalin. Water Treat. 104, 15–27 (2018)CrossRef Alipanah, F.; Rahbar, N.: CFD simulation and second law analysis of weir-type cascade solar stills with different number and dimensions of steps. Desalin. Water Treat. 104, 15–27 (2018)CrossRef
30.
go back to reference Chen, S.; Du, R.: Entropy generation of turbulent double-diffusive natural convection in a rectangular cavity. Energy 36, 1721–1734 (2011)CrossRef Chen, S.; Du, R.: Entropy generation of turbulent double-diffusive natural convection in a rectangular cavity. Energy 36, 1721–1734 (2011)CrossRef
31.
go back to reference Ghachem, K.; Kolsi, L.; Mâatki, C.; Hussein, A.K.; Borjini, M.N.: Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller. Int. Commun. Heat Mass Transf. 39, 869–876 (2012)CrossRef Ghachem, K.; Kolsi, L.; Mâatki, C.; Hussein, A.K.; Borjini, M.N.: Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller. Int. Commun. Heat Mass Transf. 39, 869–876 (2012)CrossRef
32.
go back to reference Aich, W.; Kolsi, L.; Aydi, A.; Al-Rashed, A.A.A.A.; Ait Messaoudene, N.; Borjini, M.N.: Heat and mass transfer and entropy generation inside 3D trapezoidal solar distiller. Front. Heat Mass Transf. 9(8), 1–9 (2017) Aich, W.; Kolsi, L.; Aydi, A.; Al-Rashed, A.A.A.A.; Ait Messaoudene, N.; Borjini, M.N.: Heat and mass transfer and entropy generation inside 3D trapezoidal solar distiller. Front. Heat Mass Transf. 9(8), 1–9 (2017)
33.
go back to reference Szargut, J.: Second law analysis of energy devices and processes. International progress in second law analysis. Energy 5, 709–718 (1980)CrossRef Szargut, J.: Second law analysis of energy devices and processes. International progress in second law analysis. Energy 5, 709–718 (1980)CrossRef
34.
go back to reference Dincer, I.; Rosen, M.A.: Exergy, Energy, Environment and Sustainable Development. Elsevier, Amsterdam (2007) Dincer, I.; Rosen, M.A.: Exergy, Energy, Environment and Sustainable Development. Elsevier, Amsterdam (2007)
35.
go back to reference Bejan, A.: Advanced Engineering Thermodynamics. Wiley Interscience, London (1988) Bejan, A.: Advanced Engineering Thermodynamics. Wiley Interscience, London (1988)
36.
go back to reference Bejan, A.: Entropy Generation Minimization. CRC Press, New York (1996)MATH Bejan, A.: Entropy Generation Minimization. CRC Press, New York (1996)MATH
37.
go back to reference Gude, V.G.; Nirmalakhandan, N.; Deng, S.; Maganti, A.: Desalination at low temperatures: an exergy analysis. Desalin. Water Treat. 40, 272–281 (2012)CrossRef Gude, V.G.; Nirmalakhandan, N.; Deng, S.; Maganti, A.: Desalination at low temperatures: an exergy analysis. Desalin. Water Treat. 40, 272–281 (2012)CrossRef
38.
go back to reference Lorenz, R.D.; Rennó, N.O.: Work output of planetary atmospheric engines: dissipation in clouds and rain. Geophys. Res. Lett. 29(2), 1023 (2002)CrossRef Lorenz, R.D.; Rennó, N.O.: Work output of planetary atmospheric engines: dissipation in clouds and rain. Geophys. Res. Lett. 29(2), 1023 (2002)CrossRef
39.
go back to reference Pauluis, O.M.; Held, I.M.: Entropy budget of an atmosphere in radiative-convective equilibrium. Part I: maximum work and frictional dissipation. J. Atmos. Sci. 59, 125–139 (2002)CrossRef Pauluis, O.M.; Held, I.M.: Entropy budget of an atmosphere in radiative-convective equilibrium. Part I: maximum work and frictional dissipation. J. Atmos. Sci. 59, 125–139 (2002)CrossRef
40.
go back to reference Khanmohammadi, S.; Khanmohammadi, S.: Energy, exergy and exergo-environment analyses, and tri-objective optimization of a solar still desalination with different insulations. Energy 187, 115988 (2019)CrossRef Khanmohammadi, S.; Khanmohammadi, S.: Energy, exergy and exergo-environment analyses, and tri-objective optimization of a solar still desalination with different insulations. Energy 187, 115988 (2019)CrossRef
41.
go back to reference Sarhaddi, F.; Farshchi Tabrizi, F.; Aghaei Zoori, H.; Mousavi, S.: Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Convers. Manag. 133, 97–109 (2017)CrossRef Sarhaddi, F.; Farshchi Tabrizi, F.; Aghaei Zoori, H.; Mousavi, S.: Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Convers. Manag. 133, 97–109 (2017)CrossRef
42.
go back to reference Ranjan, K.R.; Kaushik, S.C.; Panwar, N.L.: Energy and exergy analysis of passive solar distillation systems. Int. J. Low-Carbon Technol. 11(2), 211–221 (2016)CrossRef Ranjan, K.R.; Kaushik, S.C.; Panwar, N.L.: Energy and exergy analysis of passive solar distillation systems. Int. J. Low-Carbon Technol. 11(2), 211–221 (2016)CrossRef
43.
go back to reference Mistry, K.H.; Lienhard, J.H.; Zubair, S.M.: Effect of entropy generation on the performance of humidification-dehumidification desalination cycles. Int. J. Therm. Sci. 49, 1837–1847 (2010)CrossRef Mistry, K.H.; Lienhard, J.H.; Zubair, S.M.: Effect of entropy generation on the performance of humidification-dehumidification desalination cycles. Int. J. Therm. Sci. 49, 1837–1847 (2010)CrossRef
44.
go back to reference Wepfer, W.J.; Gaggioli, R.A.; Obert, E.F.: Proper evaluation of available energy for HVAC. ASHRAE Trans. 85(1), 214–230 (1979) Wepfer, W.J.; Gaggioli, R.A.; Obert, E.F.: Proper evaluation of available energy for HVAC. ASHRAE Trans. 85(1), 214–230 (1979)
45.
go back to reference Bejan, A.: Shape and Structure: From Engineering to Nature. Cambridge University Press, Cambridge (2010)MATH Bejan, A.: Shape and Structure: From Engineering to Nature. Cambridge University Press, Cambridge (2010)MATH
46.
go back to reference Prigogine, I.: Time, structure, and fluctuations. Science 201(4358), 777–785 (2001)CrossRef Prigogine, I.: Time, structure, and fluctuations. Science 201(4358), 777–785 (2001)CrossRef
47.
go back to reference Ziegler, H.: Introduction to Thermodynamics. North-Holland, Amsterdam (1983) Ziegler, H.: Introduction to Thermodynamics. North-Holland, Amsterdam (1983)
48.
go back to reference Engelien, H.K.; Larsson, T.; Skogestad, S.: Implementation of optimal operation for heat integrated distillation columns. Trans. Inst. Chem. Eng. 81, 277–281 (2003)CrossRef Engelien, H.K.; Larsson, T.; Skogestad, S.: Implementation of optimal operation for heat integrated distillation columns. Trans. Inst. Chem. Eng. 81, 277–281 (2003)CrossRef
49.
go back to reference Hernandez, S.; Segovia-Hernandez, J.G.; Rico-Ramirez, V.: Thermodynamically equivalent distillation schemes to the Petlyuk column for ternary mixtures. Energy 31, 1840–1847 (2006)CrossRef Hernandez, S.; Segovia-Hernandez, J.G.; Rico-Ramirez, V.: Thermodynamically equivalent distillation schemes to the Petlyuk column for ternary mixtures. Energy 31, 1840–1847 (2006)CrossRef
50.
go back to reference Mistry, K.H.; McGovern, R.K.; Thiel, G.P.; Summers, E.K.; Zubair, S.M.; Lienhard, J.H.: Entropy generation analysis of desalination technologies. Entropy 13, 1829–1864 (2011)CrossRef Mistry, K.H.; McGovern, R.K.; Thiel, G.P.; Summers, E.K.; Zubair, S.M.; Lienhard, J.H.: Entropy generation analysis of desalination technologies. Entropy 13, 1829–1864 (2011)CrossRef
51.
go back to reference Sharshir, S.W.; Elsheikh, A.H.; Peng, G.; Yang, N.; El-Samadony, M.O.A.: Thermal performance and exergy analysis of solar stills: a review. Renew. Sustain. Energy Rev. 73, 521–544 (2017)CrossRef Sharshir, S.W.; Elsheikh, A.H.; Peng, G.; Yang, N.; El-Samadony, M.O.A.: Thermal performance and exergy analysis of solar stills: a review. Renew. Sustain. Energy Rev. 73, 521–544 (2017)CrossRef
52.
go back to reference Khalifa, A.H.N.: Exergy analysis of modified solar still. Int. J. Therm. Environ. Eng. 10(2), 149–154 (2015) Khalifa, A.H.N.: Exergy analysis of modified solar still. Int. J. Therm. Environ. Eng. 10(2), 149–154 (2015)
53.
go back to reference Animasaun, I.L.: Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation. Ain Shams Eng. J. 7(2), 755–765 (2015)CrossRef Animasaun, I.L.: Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation. Ain Shams Eng. J. 7(2), 755–765 (2015)CrossRef
54.
go back to reference Animasaun, I.L.; Makinde, O.D.: Bioconvection in MHD nanofluid flow with non linear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)CrossRef Animasaun, I.L.; Makinde, O.D.: Bioconvection in MHD nanofluid flow with non linear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)CrossRef
55.
go back to reference Animasaun, I.L.; Makinde, O.D.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with non linear thermal radiation and quadric chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)CrossRef Animasaun, I.L.; Makinde, O.D.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with non linear thermal radiation and quadric chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)CrossRef
56.
go back to reference Makinde, O.D.; Omojoba, M.T.; Mahanthesh, B.; Alao, F.I.; Adegbie, K.S.; Animasaun, I.L.; Wakif, A.; Sivaraj, R.; Tshehla, M.S.: Significance of buoyancy, velocity index and thickness of an upper horizontal surface of a paraboloid of revolution: the case of non-Newtonian carreau fluid. DDF 387, 550–561 (2018)CrossRef Makinde, O.D.; Omojoba, M.T.; Mahanthesh, B.; Alao, F.I.; Adegbie, K.S.; Animasaun, I.L.; Wakif, A.; Sivaraj, R.; Tshehla, M.S.: Significance of buoyancy, velocity index and thickness of an upper horizontal surface of a paraboloid of revolution: the case of non-Newtonian carreau fluid. DDF 387, 550–561 (2018)CrossRef
57.
go back to reference Makinde, O.D.; Sandeep, N.; Ajayi, T.M.; Animasaun, I.L.: Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD casson fluid over an upper horizontal surface of thermally stratified melting surface of a paraboloid of revolution. Int. J. Nonlinear Sci. Numer. Simul. 19(2), 93–106 (2016)MathSciNetMATHCrossRef Makinde, O.D.; Sandeep, N.; Ajayi, T.M.; Animasaun, I.L.: Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD casson fluid over an upper horizontal surface of thermally stratified melting surface of a paraboloid of revolution. Int. J. Nonlinear Sci. Numer. Simul. 19(2), 93–106 (2016)MathSciNetMATHCrossRef
58.
go back to reference Xia, Y.; Jacobi, A.M.: Air-side data interpretation and performance analysis for heat exchangers with simultaneous heat and mass transfer: wet and frosted surfaces. Int. J. Heat Mass Transf. 48, 5089–5102 (2005)MATHCrossRef Xia, Y.; Jacobi, A.M.: Air-side data interpretation and performance analysis for heat exchangers with simultaneous heat and mass transfer: wet and frosted surfaces. Int. J. Heat Mass Transf. 48, 5089–5102 (2005)MATHCrossRef
59.
go back to reference Sadek, H.; Robinson, A.J.; Cotton, J.S.; Ching, C.Y.; Shoukri, M.: Electrohydrodynamic enhancement of in-tube convective condensation heat transfer. Int. J. Heat Mass Transf. 49, 1647–1657 (2006)CrossRef Sadek, H.; Robinson, A.J.; Cotton, J.S.; Ching, C.Y.; Shoukri, M.: Electrohydrodynamic enhancement of in-tube convective condensation heat transfer. Int. J. Heat Mass Transf. 49, 1647–1657 (2006)CrossRef
60.
go back to reference Yun, R.; Kim, Y.; Kim, M.S.: Convective boiling heat transfer characteristics of CO2 in microchannels. Int. J. Heat Mass Transf. 48, 235–242 (2005)CrossRef Yun, R.; Kim, Y.; Kim, M.S.: Convective boiling heat transfer characteristics of CO2 in microchannels. Int. J. Heat Mass Transf. 48, 235–242 (2005)CrossRef
61.
go back to reference Olutimayin, S.O.; Simonson, C.J.: Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation. Int. J. Heat Mass Transf. 48, 3319–3330 (2005)CrossRef Olutimayin, S.O.; Simonson, C.J.: Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation. Int. J. Heat Mass Transf. 48, 3319–3330 (2005)CrossRef
62.
go back to reference Gebhart, B.; Pera, L.: The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass transfer. Int. J. Heat Mass Transf. 14, 2025–2050 (1971)MATHCrossRef Gebhart, B.; Pera, L.: The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass transfer. Int. J. Heat Mass Transf. 14, 2025–2050 (1971)MATHCrossRef
63.
go back to reference Oueslati, F.; Ben-Beya, B.; Lili, T.: Double-diffusive natural convection and entropy generation in an enclosure of aspect ratio 4 with partial vertical heating and salting sources. Alex. Eng. J. 52, 605–625 (2013)CrossRef Oueslati, F.; Ben-Beya, B.; Lili, T.: Double-diffusive natural convection and entropy generation in an enclosure of aspect ratio 4 with partial vertical heating and salting sources. Alex. Eng. J. 52, 605–625 (2013)CrossRef
64.
go back to reference Parvin, S.; Rehena, N.; Alim, M.A.; Hossain, N.F.: Double diffusive natural convection flow characteristics in a cavity. Proc. Eng. 56, 480–488 (2013)CrossRef Parvin, S.; Rehena, N.; Alim, M.A.; Hossain, N.F.: Double diffusive natural convection flow characteristics in a cavity. Proc. Eng. 56, 480–488 (2013)CrossRef
65.
go back to reference Mohamed, A.F.; Hegazi, A.A.; Sultan, G.I.; El-Said, E.M.S.: Augmented heat and mass transfer effect on performance of a solar still using porous absorber: experimental investigation and exergetic analysis. Appl. Therm. Eng. 150(5), 1206–1215 (2019)CrossRef Mohamed, A.F.; Hegazi, A.A.; Sultan, G.I.; El-Said, E.M.S.: Augmented heat and mass transfer effect on performance of a solar still using porous absorber: experimental investigation and exergetic analysis. Appl. Therm. Eng. 150(5), 1206–1215 (2019)CrossRef
66.
go back to reference Nield, D.A.; Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)MATH Nield, D.A.; Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)MATH
67.
go back to reference Wang, H.; Zhao, Y.; Tian, L.: Numerical simulation of double-diffusion natural convection in rectangular square cavity with porous enclosure. IOP Conf. Ser. Earth Environ. Sci. 267, 052006 (2016)CrossRef Wang, H.; Zhao, Y.; Tian, L.: Numerical simulation of double-diffusion natural convection in rectangular square cavity with porous enclosure. IOP Conf. Ser. Earth Environ. Sci. 267, 052006 (2016)CrossRef
69.
go back to reference Ben Niche, H.; Bouabdallah, S.; Ghernaout, B.; Teggar, M.: Unsteady double diffusive natural convection with Dufour and Soret effects. Int. J. Heat Technol. 34, 39–46 (2016)CrossRef Ben Niche, H.; Bouabdallah, S.; Ghernaout, B.; Teggar, M.: Unsteady double diffusive natural convection with Dufour and Soret effects. Int. J. Heat Technol. 34, 39–46 (2016)CrossRef
70.
go back to reference Torchia-Núňez, J.C.; Cervantes-de-Gortari, J.; Porta-Gandara, M.A.: Thermodynamics of a shallow solar still. Energy Power Eng. 6, 246–265 (2014)CrossRef Torchia-Núňez, J.C.; Cervantes-de-Gortari, J.; Porta-Gandara, M.A.: Thermodynamics of a shallow solar still. Energy Power Eng. 6, 246–265 (2014)CrossRef
71.
go back to reference Dunkle, R.V.: Solar water distillation: The roof type still and a multiple effect diffusion still. International developments in heat transfer ASME. In: Proceedings of International Heat Transfer Part V., University of Colorado, Boulder, Colorado (1961) Dunkle, R.V.: Solar water distillation: The roof type still and a multiple effect diffusion still. International developments in heat transfer ASME. In: Proceedings of International Heat Transfer Part V., University of Colorado, Boulder, Colorado (1961)
72.
go back to reference Malik, M.A.S.; Tiwari, G.N.; Kumar, A.; Sodha, M.S.: Solar Distillation: A Practical Study of a Wide Range of Stills and Their Optimum Design, Construction and Performance. Pergamon Press, Oxford (1982) Malik, M.A.S.; Tiwari, G.N.; Kumar, A.; Sodha, M.S.: Solar Distillation: A Practical Study of a Wide Range of Stills and Their Optimum Design, Construction and Performance. Pergamon Press, Oxford (1982)
73.
go back to reference Jakob, M.: Heat Transfer. Wiley, New York (1957) Jakob, M.: Heat Transfer. Wiley, New York (1957)
74.
go back to reference Murugavel, K.K.; Chockalingam, K.K.S.K.; Srithar, K.: Modeling and verification of double slope single basin solar still using laboratory and actual solar conditions. Jor. J. Mech. Ind. Eng. 3(3), 228–235 (2009) Murugavel, K.K.; Chockalingam, K.K.S.K.; Srithar, K.: Modeling and verification of double slope single basin solar still using laboratory and actual solar conditions. Jor. J. Mech. Ind. Eng. 3(3), 228–235 (2009)
75.
go back to reference Ahsan, A.; Fukuhara, T.: Condensation mass transfer in unsaturated humid air inside tubular solar still. Ann. J. Hydrol. Eng. 53, 97–102 (2009) Ahsan, A.; Fukuhara, T.: Condensation mass transfer in unsaturated humid air inside tubular solar still. Ann. J. Hydrol. Eng. 53, 97–102 (2009)
76.
go back to reference Islam, K.M.S.: Heat and vapor transfer in tubular solar still and its production performance. Ph.D. thesis, Department of Architecture and Civil Engineering, Fukui University, Japan (2006) Islam, K.M.S.: Heat and vapor transfer in tubular solar still and its production performance. Ph.D. thesis, Department of Architecture and Civil Engineering, Fukui University, Japan (2006)
77.
go back to reference Ahsan, A.; Islam, K.M.S.; Fukuhara, T.; Ghazali, A.A.: Experimental study on evaporation, condensation, and production of a new tubular solar still. Desalination 260(1–3), 172–179 (2010)CrossRef Ahsan, A.; Islam, K.M.S.; Fukuhara, T.; Ghazali, A.A.: Experimental study on evaporation, condensation, and production of a new tubular solar still. Desalination 260(1–3), 172–179 (2010)CrossRef
78.
go back to reference Nagai, N.; Takeuchi, M.; Masuda, S.; Yamagata, J.; Fukuhara, T.; Takano, Y.: Heat transfer modeling and field test on basin-type solar distillation device. In: Proceedings IDA World Congress, Bahrain (2002) Nagai, N.; Takeuchi, M.; Masuda, S.; Yamagata, J.; Fukuhara, T.; Takano, Y.: Heat transfer modeling and field test on basin-type solar distillation device. In: Proceedings IDA World Congress, Bahrain (2002)
79.
go back to reference Benalaya, A.; Amir, A.; Chekirbane, A.; Nmiri, A.: Rayonnement global et insolation observes en Tunisie. Institut National de la Météorologie, Tunis (2008) Benalaya, A.; Amir, A.; Chekirbane, A.; Nmiri, A.: Rayonnement global et insolation observes en Tunisie. Institut National de la Météorologie, Tunis (2008)
80.
go back to reference Hidouri, N.; Sarray, Y.; Mchirgui, A.; Ben Brahim, A.: Study of the performance of a single solar still for a typical day in Gabès region. In: Proceedings of the 7th International Renewable Energy Congress IREC 2016, Hammamet, Tunisia (2016) Hidouri, N.; Sarray, Y.; Mchirgui, A.; Ben Brahim, A.: Study of the performance of a single solar still for a typical day in Gabès region. In: Proceedings of the 7th International Renewable Energy Congress IREC 2016, Hammamet, Tunisia (2016)
81.
go back to reference Tiwari, G.N.; Madhuri, M.: Effect of water depth on daily yield of the still. Desalination 61, 67–75 (1987)CrossRef Tiwari, G.N.; Madhuri, M.: Effect of water depth on daily yield of the still. Desalination 61, 67–75 (1987)CrossRef
82.
go back to reference Holman, J.P.: Heat Transfer. McGraw-Hill Inc., New York (1997) Holman, J.P.: Heat Transfer. McGraw-Hill Inc., New York (1997)
83.
go back to reference Abd-Elkader, M.: An investigation of the parameters involved in simple solar still with inclined yute. Renew. Energy 14, 333–338 (1998)CrossRef Abd-Elkader, M.: An investigation of the parameters involved in simple solar still with inclined yute. Renew. Energy 14, 333–338 (1998)CrossRef
84.
go back to reference Menkam, P.; Njomo, D.; Gbane, A.; Toure, S.: Experimental optimization of a solar still: application to alcohol distillation. Chem. Eng. Process. 43, 1569–1577 (2004)CrossRef Menkam, P.; Njomo, D.; Gbane, A.; Toure, S.: Experimental optimization of a solar still: application to alcohol distillation. Chem. Eng. Process. 43, 1569–1577 (2004)CrossRef
85.
go back to reference Omri, A.; Orfi, J.; Ben Nasrallah, S.: Natural convection effects in solar stills. Desalination 183, 173–178 (2005)CrossRef Omri, A.; Orfi, J.; Ben Nasrallah, S.: Natural convection effects in solar stills. Desalination 183, 173–178 (2005)CrossRef
86.
go back to reference Khalifa, A.; Hamood, A.M.: Experimental validation and enhancement of some solar still performance correlations. Desalin. Water Treat. 4, 311–315 (2009)CrossRef Khalifa, A.; Hamood, A.M.: Experimental validation and enhancement of some solar still performance correlations. Desalin. Water Treat. 4, 311–315 (2009)CrossRef
87.
go back to reference Minasian, A.N.; Al-Karaghouli, A.A.: An improved solar still: the wick-basin type. Energy Convers. Manag. 36(3), 213–217 (1995)CrossRef Minasian, A.N.; Al-Karaghouli, A.A.: An improved solar still: the wick-basin type. Energy Convers. Manag. 36(3), 213–217 (1995)CrossRef
88.
go back to reference Capelletti, G.M.: An experiment with a plastic solar still. Desalination 142, 221–227 (2002)CrossRef Capelletti, G.M.: An experiment with a plastic solar still. Desalination 142, 221–227 (2002)CrossRef
89.
go back to reference Al-Hinai, H.; Al-Nassri, M.S.; Jubran, B.A.: Parametric investigation of a double effect solar still in comparison with a single effect solar still. Desalination 177, 291–302 (2005) Al-Hinai, H.; Al-Nassri, M.S.; Jubran, B.A.: Parametric investigation of a double effect solar still in comparison with a single effect solar still. Desalination 177, 291–302 (2005)
90.
go back to reference Nijmeh, S.; Odeh, S.; Akash, B.: Experimental and theoretical study of a single-basin solar still in Jordan. Int. Commun. Heat Mass Transf. 32, 565–572 (2005)CrossRef Nijmeh, S.; Odeh, S.; Akash, B.: Experimental and theoretical study of a single-basin solar still in Jordan. Int. Commun. Heat Mass Transf. 32, 565–572 (2005)CrossRef
91.
go back to reference Sarray, Y.; Hidouri, N.; Mchirgui, A.; Ben Brahim, A.: Study of heat and mass transfer phenomena and entropy rate of humid air inside a passive solar still. Desalination 409, 80–95 (2017)CrossRef Sarray, Y.; Hidouri, N.; Mchirgui, A.; Ben Brahim, A.: Study of heat and mass transfer phenomena and entropy rate of humid air inside a passive solar still. Desalination 409, 80–95 (2017)CrossRef
92.
go back to reference Nehad, A.S.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)CrossRef Nehad, A.S.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)CrossRef
93.
go back to reference McAdams, W.H.: Heat Transmission. McGraw-Hill, New York (1954) McAdams, W.H.: Heat Transmission. McGraw-Hill, New York (1954)
94.
go back to reference Catton, I.: Natural convection in enclosures. In: Proceedings of the 6th International Heat Transfer Conference Toronto, Canada (1978) Catton, I.: Natural convection in enclosures. In: Proceedings of the 6th International Heat Transfer Conference Toronto, Canada (1978)
95.
go back to reference Sparrow, E.M.; Kratz, G.K.; Schuerger, M.J.: Evaporation of water from a horizontal surface by natural convection. J. Heat Transf. 105, 469–475 (1983)CrossRef Sparrow, E.M.; Kratz, G.K.; Schuerger, M.J.: Evaporation of water from a horizontal surface by natural convection. J. Heat Transf. 105, 469–475 (1983)CrossRef
96.
go back to reference Sharpley, B.F.; Boelter, L.M.K.: Evaporation of water into quiet air from a one-foot diameter surface. Ind. Eng. Chem. 30, 1125–1131 (1938)CrossRef Sharpley, B.F.; Boelter, L.M.K.: Evaporation of water into quiet air from a one-foot diameter surface. Ind. Eng. Chem. 30, 1125–1131 (1938)CrossRef
97.
go back to reference Boelter, L.M.K.; Gordon, H.S.; Sharpley, B.F.: Free evaporation into air of water from a free horizontal quiet surface. Ind. Eng. Chem. 38, 596–600 (1946)CrossRef Boelter, L.M.K.; Gordon, H.S.; Sharpley, B.F.: Free evaporation into air of water from a free horizontal quiet surface. Ind. Eng. Chem. 38, 596–600 (1946)CrossRef
98.
go back to reference Bower, S.M.; Saylor, J.R.: A study of the Sherwood-Rayleigh relation for water undergoing natural convection-driven evaporation. Int. J. Heat Mass Transf. 52, 3055–3063 (2009)CrossRef Bower, S.M.; Saylor, J.R.: A study of the Sherwood-Rayleigh relation for water undergoing natural convection-driven evaporation. Int. J. Heat Mass Transf. 52, 3055–3063 (2009)CrossRef
99.
go back to reference Goldstein, R.J.; Sparrow, E.M.; Jones, D.C.: Natural convection mass transfer adjacent to horizontal plates. Int. J. Heat Mass Transf. 16, 1025–1035 (1973)CrossRef Goldstein, R.J.; Sparrow, E.M.; Jones, D.C.: Natural convection mass transfer adjacent to horizontal plates. Int. J. Heat Mass Transf. 16, 1025–1035 (1973)CrossRef
100.
go back to reference Mayer, D.G.; Bulter, D.G.: Statistical validation. Ecol. Model. 68, 21–32 (1993)CrossRef Mayer, D.G.; Bulter, D.G.: Statistical validation. Ecol. Model. 68, 21–32 (1993)CrossRef
101.
go back to reference Porta, M.A.; Chargoy, N.; Fernandez, J.I.: Extreme operating conditions in shallow solar still. Sol. Energy 61, 279–286 (1997)CrossRef Porta, M.A.; Chargoy, N.; Fernandez, J.I.: Extreme operating conditions in shallow solar still. Sol. Energy 61, 279–286 (1997)CrossRef
102.
go back to reference Lucia, U.; Açikkalp, E.: Irreversible thermodynamic analysis and application for molecular heat engines. Chem. Phys. 494, 47–55 (2017)CrossRef Lucia, U.; Açikkalp, E.: Irreversible thermodynamic analysis and application for molecular heat engines. Chem. Phys. 494, 47–55 (2017)CrossRef
103.
go back to reference Al-Hinai, H.; Al-Nassri, M.S.; Jubran, B.A.: Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Convers. Manag. 43, 1639–1650 (2002)CrossRef Al-Hinai, H.; Al-Nassri, M.S.; Jubran, B.A.: Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Convers. Manag. 43, 1639–1650 (2002)CrossRef
Metadata
Title
A Note on the Significance of Entropy Generation and Work Fluxes on Humid Air Inside a Solar Still Due to Double-Diffusive Natural Convection
Authors
Abdallah Belghit
Khaoula Ghrissi
Nejib Hidouri
Publication date
03-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05164-4

Other articles of this Issue 7/2021

Arabian Journal for Science and Engineering 7/2021 Go to the issue

Premium Partners