Skip to main content
Top

2016 | OriginalPaper | Chapter

A Novel 3-D Conservative Jerk Chaotic System with Two Quadratic Nonlinearities and Its Adaptive Control

Author : Sundarapandian Vaidyanathan

Published in: Advances in Chaos Theory and Intelligent Control

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research work, we announce a six-term novel 3-D conservative jerk chaotic system with two quadratic nonlinearities. The novel conservative jerk chaotic system is obtained by adding a quadratic nonlinearity to Sprott’s 3-D conservative jerk chaotic system (1997). In this work, we first discuss the qualitative properties of the novel 3-D conservative jerk chaotic system. Conservative chaotic systems are characterized by the property that they are volume conserving. The novel conservative jerk chaotic system has two saddle-foci equilibrium points. Thus, both equilibrium points of the novel conservative jerk chaotic system are unstable. We obtain the Lyapunov exponents of the novel conservative jerk chaotic system as \(L_1 = 0.0452\), \(L_2 = 0\) and \(L_3 = -0.0452\). Also, the Kaplan-Yorke dimension of the conservative novel jerk chaotic system is obtained as \(D_{KY} = 3\). The high value of the Kaplan-Yorke dimension indicates the complexity of the novel conservative jerk chaotic system. Next, an adaptive backstepping controller is designed to stabilize the novel conservative jerk chaotic system with unknown system parameters. Moreover, an adaptive backstepping controller is designed to achieve complete chaos synchronization of the identical novel conservative jerk chaotic systems with unknown system parameters. The main control results are established using Lyapunov stability theory. MATLAB simulations are shown to illustrate all the main results on the novel 3-D conservative jerk chaotic system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398CrossRef Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398CrossRef
3.
8.
go back to reference Cai G, Tan Z (2007) Chaos synchronization of a new chaotic system via nonlinear control. J Uncertain Syst 1(3):235–240 Cai G, Tan Z (2007) Chaos synchronization of a new chaotic system via nonlinear control. J Uncertain Syst 1(3):235–240
10.
go back to reference Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos, Solitons Fractals 36:1315–1319 Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos, Solitons Fractals 36:1315–1319
12.
go back to reference Zhu C, Liu Y, Guo Y (2010) Theoretic and numerical study of a new chaotic system. Intell Inf Manage 2:104–109 Zhu C, Liu Y, Guo Y (2010) Theoretic and numerical study of a new chaotic system. Intell Inf Manage 2:104–109
14.
go back to reference Wei Z, Yang Q (2010) Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl Math Comput 217(1):422–429MathSciNetCrossRefMATH Wei Z, Yang Q (2010) Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl Math Comput 217(1):422–429MathSciNetCrossRefMATH
15.
go back to reference Sundarapandian V (2013) Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J Eng Sci Technol Rev 6(4):45–52 Sundarapandian V (2013) Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J Eng Sci Technol Rev 6(4):45–52
16.
go back to reference Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Math Comput Model 55(7–8):1904–1915MathSciNetCrossRefMATH Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Math Comput Model 55(7–8):1904–1915MathSciNetCrossRefMATH
17.
go back to reference Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J Math Sci 79(1):135–143 Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J Math Sci 79(1):135–143
18.
go back to reference Vaidyanathan S (2013) Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J Eng Sci Technol Rev 6(4):53–65 Vaidyanathan S (2013) Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J Eng Sci Technol Rev 6(4):53–65
19.
go back to reference Vaidyanathan S (2014) A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J Math Sci 84(2):219–226 Vaidyanathan S (2014) A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J Math Sci 84(2):219–226
20.
go back to reference Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur Phys J Spec Top 223(8):1519–1529 Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur Phys J Spec Top 223(8):1519–1529
21.
go back to reference Vaidyanathan S (2014) Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. Int J Model Ident Control 22(1):41–53 Vaidyanathan S (2014) Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. Int J Model Ident Control 22(1):41–53
22.
go back to reference Vaidyanathan S (2014) Generalized projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. Int J Model Ident Control 22(3):207–217 Vaidyanathan S (2014) Generalized projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. Int J Model Ident Control 22(3):207–217
23.
go back to reference Vaidyanathan S (2015) A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. J Eng Sci Technol Rev 8(2):106–115 Vaidyanathan S (2015) A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. J Eng Sci Technol Rev 8(2):106–115
24.
go back to reference Vaidyanathan S (2015) Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. Int J Model Ident Control 23(2):164–172 Vaidyanathan S (2015) Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. Int J Model Ident Control 23(2):164–172
25.
go back to reference Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modelling and control systems design, studies in computational intelligence, vol 581. Springer, Germany, pp 19–38 Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modelling and control systems design, studies in computational intelligence, vol 581. Springer, Germany, pp 19–38
26.
go back to reference Vaidyanathan S, Madhavan K (2013) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. Int J Control Theory Appl 6(2):121–137 Vaidyanathan S, Madhavan K (2013) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. Int J Control Theory Appl 6(2):121–137
27.
go back to reference Vaidyanathan S, Pakiriswamy S (2015) A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. J Eng Sci Technol Rev 8(2):52–60 Vaidyanathan S, Pakiriswamy S (2015) A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. J Eng Sci Technol Rev 8(2):52–60
28.
go back to reference Vaidyanathan S, Volos C (2015) Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch Control Sci 25(3):333–353MathSciNet Vaidyanathan S, Volos C (2015) Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch Control Sci 25(3):333–353MathSciNet
29.
go back to reference Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014) Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403 Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014) Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403
30.
go back to reference Vaidyanathan S, Rajagopal K, Volos CK, Kyprianidis IM, Stouboulos IN (2015) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. J Eng Sci Technol Rev 8(2):130–141 Vaidyanathan S, Rajagopal K, Volos CK, Kyprianidis IM, Stouboulos IN (2015) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. J Eng Sci Technol Rev 8(2):130–141
31.
go back to reference Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):24–36 Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):24–36
32.
go back to reference Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):174–184 Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):174–184
33.
go back to reference Vaidyanathan S, Volos CK, Pham VT (2015) Global chaos control of a novel nine-term chaotic system via sliding mode control. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, Germany, pp 571–590 Vaidyanathan S, Volos CK, Pham VT (2015) Global chaos control of a novel nine-term chaotic system via sliding mode control. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, Germany, pp 571–590
34.
go back to reference Pehlivan I, Moroz IM, Vaidyanathan S (2014) Analysis, synchronization and circuit design of a novel butterfly attractor. J Sound Vib 333(20):5077–5096CrossRef Pehlivan I, Moroz IM, Vaidyanathan S (2014) Analysis, synchronization and circuit design of a novel butterfly attractor. J Sound Vib 333(20):5077–5096CrossRef
35.
go back to reference Sampath S, Vaidyanathan S, Volos CK, Pham VT (2015) An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. J Eng Sci Technol Rev 8(2):1–6 Sampath S, Vaidyanathan S, Volos CK, Pham VT (2015) An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. J Eng Sci Technol Rev 8(2):1–6
36.
go back to reference Pham VT, Vaidyanathan S, Volos CK, Jafari S (2015) Hidden attractors in a chaotic system with an exponential nonlinear term. Eur Phys J Spec Top 224(8):1507–1517 Pham VT, Vaidyanathan S, Volos CK, Jafari S (2015) Hidden attractors in a chaotic system with an exponential nonlinear term. Eur Phys J Spec Top 224(8):1507–1517
37.
go back to reference Azar AT (2010) Fuzzy systems. IN-TECH, Vienna Azar AT (2010) Fuzzy systems. IN-TECH, Vienna
38.
go back to reference Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Germany Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Germany
39.
go back to reference Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control, studies in computational intelligence, vol 575. Springer, Germany Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control, studies in computational intelligence, vol 575. Springer, Germany
40.
go back to reference Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engineering and automation. Advances in computational intelligence and robotics (ACIR). IGI-Global, USA Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engineering and automation. Advances in computational intelligence and robotics (ACIR). IGI-Global, USA
41.
go back to reference Azar AT, Zhu Q (2015) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, GermanyMATH Azar AT, Zhu Q (2015) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, GermanyMATH
42.
go back to reference Zhu Q, Azar AT (2015) Complex system modelling and control through intelligent soft computations, studies in fuzzines and soft computing, vol 319. Springer, Germany Zhu Q, Azar AT (2015) Complex system modelling and control through intelligent soft computations, studies in fuzzines and soft computing, vol 319. Springer, Germany
43.
go back to reference Kengne J, Chedjou JC, Kenne G, Kyamakya K (2012) Dynamical properties and chaos synchronization of improved Colpitts oscillators. Commun Nonlinear Sci Numer Simul 17(7):2914–2923MathSciNetCrossRef Kengne J, Chedjou JC, Kenne G, Kyamakya K (2012) Dynamical properties and chaos synchronization of improved Colpitts oscillators. Commun Nonlinear Sci Numer Simul 17(7):2914–2923MathSciNetCrossRef
44.
go back to reference Sharma A, Patidar V, Purohit G, Sud KK (2012) Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping. Commun Nonlinear Sci Numer Simul 17(6):2254–2269MathSciNetCrossRef Sharma A, Patidar V, Purohit G, Sud KK (2012) Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping. Commun Nonlinear Sci Numer Simul 17(6):2254–2269MathSciNetCrossRef
45.
go back to reference Li N, Pan W, Yan L, Luo B, Zou X (2014) Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers. Commun Nonlinear Sci Numer Simul 19(6):1874–1883CrossRef Li N, Pan W, Yan L, Luo B, Zou X (2014) Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers. Commun Nonlinear Sci Numer Simul 19(6):1874–1883CrossRef
46.
go back to reference Yuan G, Zhang X, Wang Z (2014) Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking. Opt Int J Light Electron Opt 125(8):1950–1953 Yuan G, Zhang X, Wang Z (2014) Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking. Opt Int J Light Electron Opt 125(8):1950–1953
47.
go back to reference Gaspard P (1999) Microscopic chaos and chemical reactions. Physica A: Stat Mech Appl 263(1–4):315–328CrossRef Gaspard P (1999) Microscopic chaos and chemical reactions. Physica A: Stat Mech Appl 263(1–4):315–328CrossRef
48.
go back to reference Petrov V, Gaspar V, Masere J, Showalter K (1993) Controlling chaos in Belousov-Zhabotinsky reaction. Nature 361:240–243CrossRef Petrov V, Gaspar V, Masere J, Showalter K (1993) Controlling chaos in Belousov-Zhabotinsky reaction. Nature 361:240–243CrossRef
49.
go back to reference Vaidyanathan S (2015) Adaptive control of a chemical chaotic reactor. Int J PharmTech Res 8(3):377–382 Vaidyanathan S (2015) Adaptive control of a chemical chaotic reactor. Int J PharmTech Res 8(3):377–382
50.
go back to reference Vaidyanathan S (2015) Adaptive synchronization of chemical chaotic reactors. Int J ChemTech Res 8(2):612–621 Vaidyanathan S (2015) Adaptive synchronization of chemical chaotic reactors. Int J ChemTech Res 8(2):612–621
51.
go back to reference Vaidyanathan S (2015) Anti-synchronization of Brusselator chemical reaction systems via adaptive control. Int J ChemTech Res 8(6):759–768 Vaidyanathan S (2015) Anti-synchronization of Brusselator chemical reaction systems via adaptive control. Int J ChemTech Res 8(6):759–768
52.
go back to reference Vaidyanathan S (2015) Dynamics and control of Brusselator chemical reaction. Int J ChemTech Res 8(6):740–749 Vaidyanathan S (2015) Dynamics and control of Brusselator chemical reaction. Int J ChemTech Res 8(6):740–749
53.
go back to reference Vaidyanathan S (2015) Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. Int J ChemTech Res 8(6):795–803 Vaidyanathan S (2015) Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. Int J ChemTech Res 8(6):795–803
54.
go back to reference Vaidyanathan S (2015) Synchronization of Tokamak systems with symmetric and magnetically confined plasma via adaptive control. Int J ChemTech Res 8(6):818–827 Vaidyanathan S (2015) Synchronization of Tokamak systems with symmetric and magnetically confined plasma via adaptive control. Int J ChemTech Res 8(6):818–827
55.
go back to reference Das S, Goswami D, Chatterjee S, Mukherjee S (2014) Stability and chaos analysis of a novel swarm dynamics with applications to multi-agent systems. Eng Appl Artif Intell 30:189–198CrossRef Das S, Goswami D, Chatterjee S, Mukherjee S (2014) Stability and chaos analysis of a novel swarm dynamics with applications to multi-agent systems. Eng Appl Artif Intell 30:189–198CrossRef
56.
go back to reference Kyriazis M (1991) Applications of chaos theory to the molecular biology of aging. Exp Gerontol 26(6):569–572CrossRef Kyriazis M (1991) Applications of chaos theory to the molecular biology of aging. Exp Gerontol 26(6):569–572CrossRef
57.
go back to reference Vaidyanathan S (2015) 3-cells cellular neural network (CNN) attractor and its adaptive biological control. Int J PharmTech Res 8(4):632–640 Vaidyanathan S (2015) 3-cells cellular neural network (CNN) attractor and its adaptive biological control. Int J PharmTech Res 8(4):632–640
58.
go back to reference Vaidyanathan S (2015) Adaptive backstepping control of eEnzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(2):256–261 Vaidyanathan S (2015) Adaptive backstepping control of eEnzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(2):256–261
59.
go back to reference Vaidyanathan S (2015) Adaptive biological control of generalized Lotka-Volterra three-species biological system. Int J PharmTech Res 8(4):622–631 Vaidyanathan S (2015) Adaptive biological control of generalized Lotka-Volterra three-species biological system. Int J PharmTech Res 8(4):622–631
60.
go back to reference Vaidyanathan S (2015) Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(5):964–973 Vaidyanathan S (2015) Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(5):964–973
61.
go back to reference Vaidyanathan S (2015) Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. Int J PharmTech Res 8(5):928–937 Vaidyanathan S (2015) Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. Int J PharmTech Res 8(5):928–937
62.
go back to reference Vaidyanathan S (2015) Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor. Int J PharmTech Res 8(5):956–963 Vaidyanathan S (2015) Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor. Int J PharmTech Res 8(5):956–963
63.
go back to reference Vaidyanathan S (2015) Lotka-Volterra population biology models with negative feedback and their ecological monitoring. Int J PharmTech Res 8(5):974–981 Vaidyanathan S (2015) Lotka-Volterra population biology models with negative feedback and their ecological monitoring. Int J PharmTech Res 8(5):974–981
64.
go back to reference Vaidyanathan S (2015) Synchronization of 3-cells cellular neural network (CNN) attractors via adaptive control method. Int J PharmTech Res 8(5):946–955 Vaidyanathan S (2015) Synchronization of 3-cells cellular neural network (CNN) attractors via adaptive control method. Int J PharmTech Res 8(5):946–955
65.
go back to reference Gibson WT, Wilson WG (2013) Individual-based chaos: extensions of the discrete logistic model. J Theoret Biol 339:84–92MathSciNetCrossRef Gibson WT, Wilson WG (2013) Individual-based chaos: extensions of the discrete logistic model. J Theoret Biol 339:84–92MathSciNetCrossRef
66.
go back to reference Suérez I (1999) Mastering chaos in ecology. Ecol Model 117(2–3):305–314CrossRef Suérez I (1999) Mastering chaos in ecology. Ecol Model 117(2–3):305–314CrossRef
67.
go back to reference Lang J (2015) Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Opt Commun 338:181–192CrossRef Lang J (2015) Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Opt Commun 338:181–192CrossRef
68.
go back to reference Zhang X, Zhao Z, Wang J (2014) Chaotic image encryption based on circular substitution box and key stream buffer. Signal Process Image Commun 29(8):902–913CrossRef Zhang X, Zhao Z, Wang J (2014) Chaotic image encryption based on circular substitution box and key stream buffer. Signal Process Image Commun 29(8):902–913CrossRef
69.
70.
71.
go back to reference Azar AT, Serrano FE (2014) Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Comput Appl 25(5):983–995CrossRef Azar AT, Serrano FE (2014) Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Comput Appl 25(5):983–995CrossRef
72.
go back to reference Azar AT, Serrano FE (2015) Adaptive sliding mode control of the Furuta pendulum. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, Germany, pp 1–42 Azar AT, Serrano FE (2015) Adaptive sliding mode control of the Furuta pendulum. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, Germany, pp 1–42
73.
go back to reference Azar AT, Serrano FE (2015) Deadbeat control for multivariable systems with time varying delays. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Germany, pp 97–132 Azar AT, Serrano FE (2015) Deadbeat control for multivariable systems with time varying delays. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Germany, pp 97–132
74.
go back to reference Azar AT, Serrano FE (2015) Design and modeling of anti wind up PID controllers. In: Zhu Q, Azar AT (eds) Complex system modelling and control through intelligent soft computations, studies in fuzziness and soft computing, vol 319. Springer, Germany, pp 1–44 Azar AT, Serrano FE (2015) Design and modeling of anti wind up PID controllers. In: Zhu Q, Azar AT (eds) Complex system modelling and control through intelligent soft computations, studies in fuzziness and soft computing, vol 319. Springer, Germany, pp 1–44
75.
go back to reference Azar AT, Serrano FE (2015) Stabilizatoin and control of mechanical systems with backlash. In: Azar AT, Vaidyanathan S (eds) Handbook of research on advanced intelligent control engineering and automation., Advances in computational intelligence and robotics (ACIR)IGI-Global, USA, pp 1–60 Azar AT, Serrano FE (2015) Stabilizatoin and control of mechanical systems with backlash. In: Azar AT, Vaidyanathan S (eds) Handbook of research on advanced intelligent control engineering and automation., Advances in computational intelligence and robotics (ACIR)IGI-Global, USA, pp 1–60
76.
77.
go back to reference Murali K, Lakshmanan M (1998) Secure communication using a compound signal from generalized chaotic systems. Phys Lett A 241(6):303–310CrossRefMATH Murali K, Lakshmanan M (1998) Secure communication using a compound signal from generalized chaotic systems. Phys Lett A 241(6):303–310CrossRefMATH
78.
go back to reference Zaher AA, Abu-Rezq A (2011) On the design of chaos-based secure communication systems. Commun Nonlinear Syst Numer Simul 16(9):3721–3727MathSciNetCrossRefMATH Zaher AA, Abu-Rezq A (2011) On the design of chaos-based secure communication systems. Commun Nonlinear Syst Numer Simul 16(9):3721–3727MathSciNetCrossRefMATH
79.
go back to reference Mondal S, Mahanta C (2014) Adaptive second order terminal sliding mode controller for robotic manipulators. J Franklin Inst 351(4):2356–2377MathSciNetCrossRef Mondal S, Mahanta C (2014) Adaptive second order terminal sliding mode controller for robotic manipulators. J Franklin Inst 351(4):2356–2377MathSciNetCrossRef
80.
go back to reference Nehmzow U, Walker K (2005) Quantitative description of robot-environment interaction using chaos theory. Robot Auton Syst 53(3–4):177–193CrossRef Nehmzow U, Walker K (2005) Quantitative description of robot-environment interaction using chaos theory. Robot Auton Syst 53(3–4):177–193CrossRef
81.
go back to reference Volos CK, Kyprianidis IM, Stouboulos IN (2013) Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot Auton Syst 61(12):1314–1322CrossRef Volos CK, Kyprianidis IM, Stouboulos IN (2013) Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot Auton Syst 61(12):1314–1322CrossRef
82.
go back to reference Qu Z (2011) Chaos in the genesis and maintenance of cardiac arrhythmias. Prog Biophys Mol Biol 105(3):247–257CrossRef Qu Z (2011) Chaos in the genesis and maintenance of cardiac arrhythmias. Prog Biophys Mol Biol 105(3):247–257CrossRef
85.
go back to reference Li Z, Chen G (2006) Integration of fuzzy logic and chaos theory, studies in fuzziness and soft computing, vol 187. Springer, GermanyCrossRef Li Z, Chen G (2006) Integration of fuzzy logic and chaos theory, studies in fuzziness and soft computing, vol 187. Springer, GermanyCrossRef
86.
go back to reference Huang X, Zhao Z, Wang Z, Li Y (2012) Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94:13–21CrossRef Huang X, Zhao Z, Wang Z, Li Y (2012) Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94:13–21CrossRef
87.
go back to reference Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256CrossRefMATH Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256CrossRefMATH
88.
go back to reference Lian S, Chen X (2011) Traceable content protection based on chaos and neural networks. Appl Soft Comput 11(7):4293–4301CrossRef Lian S, Chen X (2011) Traceable content protection based on chaos and neural networks. Appl Soft Comput 11(7):4293–4301CrossRef
89.
go back to reference Guégan D (2009) Chaos in economics and finance. Ann Rev Control 33(1):89–93CrossRef Guégan D (2009) Chaos in economics and finance. Ann Rev Control 33(1):89–93CrossRef
91.
go back to reference Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015) A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J Eng Sci Technol Rev 8(2):205–214 Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015) A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J Eng Sci Technol Rev 8(2):205–214
92.
go back to reference Volos CK, Kyprianidis IM, Stouboulos IN, Tlelo-Cuautle E, Vaidyanathan S (2015) Memristor: a new concept in synchronization of coupled neuromorphic circuits. J Eng Sci Technol Rev 8(2):157–173 Volos CK, Kyprianidis IM, Stouboulos IN, Tlelo-Cuautle E, Vaidyanathan S (2015) Memristor: a new concept in synchronization of coupled neuromorphic circuits. J Eng Sci Technol Rev 8(2):157–173
93.
go back to reference Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42(2):289–299 Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42(2):289–299
94.
go back to reference Vaidyanathan S (2011) Output regulation of Arneodo-Coullet chaotic system. Communications in Computer and Information Science 133:98–107 Vaidyanathan S (2011) Output regulation of Arneodo-Coullet chaotic system. Communications in Computer and Information Science 133:98–107
95.
go back to reference Vaidyanathan S (2011) Output regulation of the unified chaotic system. Commun Comput Inf Sci 198:10–17 Vaidyanathan S (2011) Output regulation of the unified chaotic system. Commun Comput Inf Sci 198:10–17
96.
go back to reference Vaidyanathan S, Azar AT, Rajagopal K, Alexander P (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control. Int J Model Ident Control 23(3):267–277 Vaidyanathan S, Azar AT, Rajagopal K, Alexander P (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control. Int J Model Ident Control 23(3):267–277
97.
go back to reference Noroozi N, Roopaei M, Karimaghaee P, Safavi AA (2010) Simple adaptive variable structure control for unknown chaotic systems. Commun Nonlinear Sci Numer Simul 15(3):707–727MathSciNetCrossRefMATH Noroozi N, Roopaei M, Karimaghaee P, Safavi AA (2010) Simple adaptive variable structure control for unknown chaotic systems. Commun Nonlinear Sci Numer Simul 15(3):707–727MathSciNetCrossRefMATH
98.
go back to reference Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo System without equilibrium. J Eng Sci Technol Rev 8(2):232–244 Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo System without equilibrium. J Eng Sci Technol Rev 8(2):232–244
99.
go back to reference Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theory Appl 5(2):117–123 Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theory Appl 5(2):117–123
100.
go back to reference Vaidyanathan S (2012) Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int J Control Theory Appl 1(2):15–20 Vaidyanathan S (2012) Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int J Control Theory Appl 1(2):15–20
101.
go back to reference Vaidyanathan S, Volos CK, Rajagopal K, Kyprianidis IM, Stouboulos IN (2015) Adaptive backstepping controller design for the anti-synchronization of identical WINDMI chaotic systems with unknown parameters and its SPICE implementation. J Eng Sci Technol Rev 8(2):74–82 Vaidyanathan S, Volos CK, Rajagopal K, Kyprianidis IM, Stouboulos IN (2015) Adaptive backstepping controller design for the anti-synchronization of identical WINDMI chaotic systems with unknown parameters and its SPICE implementation. J Eng Sci Technol Rev 8(2):74–82
102.
go back to reference Carroll TL, Pecora LM (1991) Synchronizing chaotic circuits. IEEE Trans Circuits Syst 38(4):453–456CrossRefMATH Carroll TL, Pecora LM (1991) Synchronizing chaotic circuits. IEEE Trans Circuits Syst 38(4):453–456CrossRefMATH
103.
go back to reference Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824 Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824
104.
go back to reference Karthikeyan R, Sundarapandian V (2014) Hybrid chaos synchronization of four-scroll systems via active control. J Electr Eng 65(2):97–103 Karthikeyan R, Sundarapandian V (2014) Hybrid chaos synchronization of four-scroll systems via active control. J Electr Eng 65(2):97–103
105.
go back to reference Sarasu P, Sundarapandian V (2011) Active controller design for the generalized projective synchronization of four-scroll chaotic systems. Int J Syst Signal Control Eng Appl 4(2):26–33 Sarasu P, Sundarapandian V (2011) Active controller design for the generalized projective synchronization of four-scroll chaotic systems. Int J Syst Signal Control Eng Appl 4(2):26–33
106.
go back to reference Sarasu P, Sundarapandian V (2011) The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. Int J Soft Comput 6(5):216–223 Sarasu P, Sundarapandian V (2011) The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. Int J Soft Comput 6(5):216–223
107.
go back to reference Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42(2):289–299 Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42(2):289–299
108.
go back to reference Sundarapandian V, Karthikeyan R (2012) Hybrid synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems via active control. J Eng Appl Sci 7(3):254–264 Sundarapandian V, Karthikeyan R (2012) Hybrid synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems via active control. J Eng Appl Sci 7(3):254–264
109.
go back to reference Vaidyanathan S (2011) Hybrid chaos synchronization of Liu and Lü systems by active nonlinear control. Commun Comput Inf Sci 204:1–10 Vaidyanathan S (2011) Hybrid chaos synchronization of Liu and Lü systems by active nonlinear control. Commun Comput Inf Sci 204:1–10
110.
go back to reference Vaidyanathan S (2012) Output regulation of the Liu chaotic system. Appl Mech Mater 110–116:3982–3989 Vaidyanathan S (2012) Output regulation of the Liu chaotic system. Appl Mech Mater 110–116:3982–3989
111.
go back to reference Vaidyanathan S, Rajagopal K (2011) Anti-synchronization of Li and T chaotic systems by active nonlinear control. Commun Comput Inf Sci 198:175–184 Vaidyanathan S, Rajagopal K (2011) Anti-synchronization of Li and T chaotic systems by active nonlinear control. Commun Comput Inf Sci 198:175–184
112.
go back to reference Vaidyanathan S, Rajagopal K (2011) Global chaos synchronization of hyperchaotic Pang and Wang systems by active nonlinear control. Commun Comput Inf Sci 204:84–93 Vaidyanathan S, Rajagopal K (2011) Global chaos synchronization of hyperchaotic Pang and Wang systems by active nonlinear control. Commun Comput Inf Sci 204:84–93
113.
go back to reference Vaidyanathan S, Rasappan S (2011) Global chaos synchronization of hyperchaotic Bao and Xu systems by active nonlinear control. Commun Comput Inf Sci 198:10–17CrossRef Vaidyanathan S, Rasappan S (2011) Global chaos synchronization of hyperchaotic Bao and Xu systems by active nonlinear control. Commun Comput Inf Sci 198:10–17CrossRef
114.
go back to reference Vaidyanathan S, Pham VT, Volos CK (2015) A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. Eur Phys J Spec Top 224(8):1575–1592 Vaidyanathan S, Pham VT, Volos CK (2015) A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. Eur Phys J Spec Top 224(8):1575–1592
115.
go back to reference Sarasu P, Sundarapandian V (2012) Adaptive controller design for the generalized projective synchronization of 4-scroll systems. Int J Syst Signal Control Eng Appl 5(2):21–30 Sarasu P, Sundarapandian V (2012) Adaptive controller design for the generalized projective synchronization of 4-scroll systems. Int J Syst Signal Control Eng Appl 5(2):21–30
116.
go back to reference Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of three-scroll chaotic systems via adaptive control. Eur J Sci Res 72(4):504–522 Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of three-scroll chaotic systems via adaptive control. Eur J Sci Res 72(4):504–522
117.
go back to reference Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of two-scroll systems via adaptive control. Int J Soft Comput 7(4):146–156 Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of two-scroll systems via adaptive control. Int J Soft Comput 7(4):146–156
118.
go back to reference Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. Int J Syst Signal Control Eng Appl 4(2):18–25 Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. Int J Syst Signal Control Eng Appl 4(2):18–25
119.
go back to reference Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. Eur J Sci Res 64(1):94–106 Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. Eur J Sci Res 64(1):94–106
120.
go back to reference Sundarapandian V, Karthikeyan R (2012) Adaptive anti-synchronization of uncertain Tigan and Li systems. J Eng Appl Sci 7(1):45–52 Sundarapandian V, Karthikeyan R (2012) Adaptive anti-synchronization of uncertain Tigan and Li systems. J Eng Appl Sci 7(1):45–52
121.
go back to reference Vaidyanathan S (2012) Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adaptive control. Int J Control Theory Appl 5(1):41–59 Vaidyanathan S (2012) Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adaptive control. Int J Control Theory Appl 5(1):41–59
122.
go back to reference Vaidyanathan S (2013) Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Adv Intell Syst Comput 177:1–10 Vaidyanathan S (2013) Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Adv Intell Syst Comput 177:1–10
123.
go back to reference Vaidyanathan S (2015) Hyperchaos, qualitative analysis, control and synchronisation of a ten-term 4-D hyperchaotic system with an exponential nonlinearity and three quadratic nonlinearities. Int J Model Ident Control 23(4):380–392 Vaidyanathan S (2015) Hyperchaos, qualitative analysis, control and synchronisation of a ten-term 4-D hyperchaotic system with an exponential nonlinearity and three quadratic nonlinearities. Int J Model Ident Control 23(4):380–392
124.
go back to reference Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Germany, pp 19–38 Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Germany, pp 19–38
125.
go back to reference Vaidyanathan S, Pakiriswamy S (2013) Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. Int J Control Theory Appl 6(2):153–163 Vaidyanathan S, Pakiriswamy S (2013) Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. Int J Control Theory Appl 6(2):153–163
126.
go back to reference Vaidyanathan S, Rajagopal K (2011) Global chaos synchronization of Lü and Pan systems by adaptive nonlinear control. Commun Comput Inf Sci 205:193–202 Vaidyanathan S, Rajagopal K (2011) Global chaos synchronization of Lü and Pan systems by adaptive nonlinear control. Commun Comput Inf Sci 205:193–202
127.
go back to reference Vaidyanathan S, Rajagopal K (2012) Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. Int J Soft Comput 7(1):28–37CrossRefMATH Vaidyanathan S, Rajagopal K (2012) Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. Int J Soft Comput 7(1):28–37CrossRefMATH
128.
go back to reference Vaidyanathan S, Volos C, Pham VT (2014a) Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch Control Sci 24(4):409–446MathSciNetMATH Vaidyanathan S, Volos C, Pham VT (2014a) Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch Control Sci 24(4):409–446MathSciNetMATH
129.
go back to reference Vaidyanathan S, Volos C, Pham VT, Madhavan K (2015) Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Arch Control Sci 25(1):5–28 Vaidyanathan S, Volos C, Pham VT, Madhavan K (2015) Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Arch Control Sci 25(1):5–28
130.
go back to reference Gan Q, Liang Y (2012) Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control. J Franklin Inst 349(6):1955–1971MathSciNetCrossRefMATH Gan Q, Liang Y (2012) Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control. J Franklin Inst 349(6):1955–1971MathSciNetCrossRefMATH
131.
go back to reference Li N, Zhang Y, Nie Z (2011) Synchronization for general complex dynamical networks with sampled-data. Neurocomputing 74(5):805–811CrossRef Li N, Zhang Y, Nie Z (2011) Synchronization for general complex dynamical networks with sampled-data. Neurocomputing 74(5):805–811CrossRef
132.
go back to reference Xiao X, Zhou L, Zhang Z (2014) Synchronization of chaotic Lur’e systems with quantized sampled-data controller. Commun Nonlinear Sci Numer Simul 19(6):2039–2047MathSciNetCrossRef Xiao X, Zhou L, Zhang Z (2014) Synchronization of chaotic Lur’e systems with quantized sampled-data controller. Commun Nonlinear Sci Numer Simul 19(6):2039–2047MathSciNetCrossRef
133.
go back to reference Zhang H, Zhou J (2012) Synchronization of sampled-data coupled harmonic oscillators with control inputs missing. Syst Control Lett 61(12):1277–1285MathSciNetCrossRefMATH Zhang H, Zhou J (2012) Synchronization of sampled-data coupled harmonic oscillators with control inputs missing. Syst Control Lett 61(12):1277–1285MathSciNetCrossRefMATH
134.
go back to reference Chen WH, Wei D, Lu X (2014) Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control. Commun Nonlinear Sci Numer Simul 19(9):3298–3312MathSciNetCrossRef Chen WH, Wei D, Lu X (2014) Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control. Commun Nonlinear Sci Numer Simul 19(9):3298–3312MathSciNetCrossRef
135.
136.
go back to reference Shahverdiev EM, Shore KA (2009) Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization. Opt Commun 282(17):3568–3572CrossRef Shahverdiev EM, Shore KA (2009) Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization. Opt Commun 282(17):3568–3572CrossRef
137.
go back to reference Rasappan S, Vaidyanathan S (2012a) Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control. Far East J Math Sci 67(2):265–287MathSciNetMATH Rasappan S, Vaidyanathan S (2012a) Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control. Far East J Math Sci 67(2):265–287MathSciNetMATH
138.
go back to reference Rasappan S, Vaidyanathan S (2012) Hybrid synchronization of n-scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback. Arch Control Sci 22(3):343–365 Rasappan S, Vaidyanathan S (2012) Hybrid synchronization of n-scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback. Arch Control Sci 22(3):343–365
139.
go back to reference Rasappan S, Vaidyanathan S (2012) Synchronization of hyperchaotic Liu system via backstepping control with recursive feedback. Commun Comput Inf Sci 305:212–221 Rasappan S, Vaidyanathan S (2012) Synchronization of hyperchaotic Liu system via backstepping control with recursive feedback. Commun Comput Inf Sci 305:212–221
140.
go back to reference Rasappan S, Vaidyanathan S (2013) Hybrid synchronization of \(n\)-scroll chaotic Chua circuits using adaptive backstepping control design with recursive feedback. Malays J Math Sci 7(2):219–246MathSciNet Rasappan S, Vaidyanathan S (2013) Hybrid synchronization of \(n\)-scroll chaotic Chua circuits using adaptive backstepping control design with recursive feedback. Malays J Math Sci 7(2):219–246MathSciNet
141.
go back to reference Rasappan S, Vaidyanathan S (2014) Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Math J 54(1):293–320 Rasappan S, Vaidyanathan S (2014) Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Math J 54(1):293–320
142.
go back to reference Suresh R, Sundarapandian V (2013) Global chaos synchronization of a family of \(n\)-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East J Math Sci 73(1):73–95MATH Suresh R, Sundarapandian V (2013) Global chaos synchronization of a family of \(n\)-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East J Math Sci 73(1):73–95MATH
143.
go back to reference Vaidyanathan S, Rasappan S (2014) Global chaos synchronization of \(n\)-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arab J Sci Eng 39(4):3351–3364CrossRef Vaidyanathan S, Rasappan S (2014) Global chaos synchronization of \(n\)-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arab J Sci Eng 39(4):3351–3364CrossRef
144.
go back to reference Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Stud Comput Intell 581:39–58 Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Stud Comput Intell 581:39–58
145.
go back to reference Sundarapandian V, Sivaperumal S (2011) Sliding controller design of hybrid synchronization of four-wing chaotic systems. Int J Soft Comput 6(5):224–231CrossRef Sundarapandian V, Sivaperumal S (2011) Sliding controller design of hybrid synchronization of four-wing chaotic systems. Int J Soft Comput 6(5):224–231CrossRef
146.
go back to reference Vaidyanathan S (2012) Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control. Adv Intell Syst Comput 176:329–337 Vaidyanathan S (2012) Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control. Adv Intell Syst Comput 176:329–337
147.
go back to reference Vaidyanathan S (2014) Global chaos synchronization of identical Li-Wu chaotic systems via sliding mode control. Int J Model Ident Control 22(2):170–177 Vaidyanathan S (2014) Global chaos synchronization of identical Li-Wu chaotic systems via sliding mode control. Int J Model Ident Control 22(2):170–177
148.
go back to reference Vaidyanathan S, Azar AT (2015) Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan-Madhavan chaotic systems. Stud. Comput Intell 576:527–547 Vaidyanathan S, Azar AT (2015) Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan-Madhavan chaotic systems. Stud. Comput Intell 576:527–547
149.
go back to reference Vaidyanathan S, Azar AT (2015) Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan chaotic systems. Stud Comput Intell 576:549–569 Vaidyanathan S, Azar AT (2015) Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan chaotic systems. Stud Comput Intell 576:549–569
150.
go back to reference Vaidyanathan S, Sampath S (2011) Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. Commun Comput Inf Sci 205:156–164CrossRef Vaidyanathan S, Sampath S (2011) Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. Commun Comput Inf Sci 205:156–164CrossRef
151.
go back to reference Vaidyanathan S, Sampath S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Autom Comput 9(3):274–279CrossRef Vaidyanathan S, Sampath S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Autom Comput 9(3):274–279CrossRef
152.
go back to reference Sprott JC (2010) Elegant chaos: algebraically simple chaotic flows. World Scientific, Singapore Sprott JC (2010) Elegant chaos: algebraically simple chaotic flows. World Scientific, Singapore
153.
go back to reference Sprott JC (1997) Some simple chaotic jerk functions. Am J Phys 65(6):537–543CrossRef Sprott JC (1997) Some simple chaotic jerk functions. Am J Phys 65(6):537–543CrossRef
154.
go back to reference Khalil HK (2001) Nonlinear Syst. Prentice Hall, New Jersey Khalil HK (2001) Nonlinear Syst. Prentice Hall, New Jersey
Metadata
Title
A Novel 3-D Conservative Jerk Chaotic System with Two Quadratic Nonlinearities and Its Adaptive Control
Author
Sundarapandian Vaidyanathan
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-30340-6_15

Premium Partner