Skip to main content
Top
Published in:

01-08-2022

A Novel Adaptive Traffic Signal Control Based on Cloud/Fog/Edge Computing

Authors: Seyit Alperen Celtek, Akif Durdu

Published in: International Journal of Intelligent Transportation Systems Research | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes the Internet of Things-based real-time adaptive traffic signal control strategy. The proposed model consists of three-layer; edge computing layer, fog computing layer, and cloud computing layer. The edge computing layer provides real-time and local optimization. The middle layer, which is the fog computing layer, performs a real-time and global optimization process. The cloud computing layer, which is the top layer, acts as a control center and optimizes the parameters of the fog layer and the edge layer. The proposed strategy uses the Deep Q-Learning algorithm for the optimization process in all three layers. This study employs the SUMO traffic simulator for performance evaluation. These results are compared with the results of adaptive traffic control methods. The output of this study shows that the proposed model can reduce waiting times and travel times while increasing travel speed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Ge, H., Song, Y., Wu, C., Ren, J., Tan, G.: Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control,. IEEE Access. 7, 40797–40809 (2019)CrossRef Ge, H., Song, Y., Wu, C., Ren, J., Tan, G.: Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control,. IEEE Access. 7, 40797–40809 (2019)CrossRef
2.
go back to reference Spall, J.C., Chin, D.C.: Traffic-responsive signal timing for system-wide traffic control,. Transp. Res. Part C: Emerg. Technol. 5, 3–4 (1997)CrossRef Spall, J.C., Chin, D.C.: Traffic-responsive signal timing for system-wide traffic control,. Transp. Res. Part C: Emerg. Technol. 5, 3–4 (1997)CrossRef
3.
go back to reference McCrea, J., Moutari, S.: “A hybrid macroscopic-based model for traffic flow in road networks,“. Eur. J. Oper. Res. 207(2), 676–684 (2010)CrossRefMATHMathSciNet McCrea, J., Moutari, S.: “A hybrid macroscopic-based model for traffic flow in road networks,“. Eur. J. Oper. Res. 207(2), 676–684 (2010)CrossRefMATHMathSciNet
4.
go back to reference Sun, C., Luo, Y., Li, J.: Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China,. J. Clean. Prod. 172, 488–496 (2018)CrossRef Sun, C., Luo, Y., Li, J.: Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China,. J. Clean. Prod. 172, 488–496 (2018)CrossRef
5.
go back to reference Levy, J.I., Buonocore, J.J., Von Stackelberg, K.: Evaluation of the public health impacts of traffic congestion: a health risk assessment. Environ. Health. 9(1), 1–12 (2010)CrossRef Levy, J.I., Buonocore, J.J., Von Stackelberg, K.: Evaluation of the public health impacts of traffic congestion: a health risk assessment. Environ. Health. 9(1), 1–12 (2010)CrossRef
6.
go back to reference Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic engineering. Pearson/Prentice Hall (2004) Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic engineering. Pearson/Prentice Hall (2004)
7.
go back to reference Garcia-Nieto, J., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights with particle swarm optimization,. IEEE Trans. Evol. Comput. 17(6), 823–839 (2013)CrossRef Garcia-Nieto, J., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights with particle swarm optimization,. IEEE Trans. Evol. Comput. 17(6), 823–839 (2013)CrossRef
8.
go back to reference Zhou, P., Fang, Z., Dong, H., Liu, J., Pan, S.: “Data analysis with multi-objective optimization algorithm: A study in smart traffic signal system,“ in IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), 2017: IEEE, pp. 307–310. (2017) Zhou, P., Fang, Z., Dong, H., Liu, J., Pan, S.: “Data analysis with multi-objective optimization algorithm: A study in smart traffic signal system,“ in IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), 2017: IEEE, pp. 307–310. (2017)
9.
go back to reference Ali, M.E.M., Durdu, A., Celtek, S.A., Yilmaz, A.: “An Adaptive Method for Traffic Signal Control Based on Fuzzy Logic With Webster and Modified Webster Formula Using SUMO Traffic Simulator,“. IEEE Access. 9, 102985–102997 (2021)CrossRef Ali, M.E.M., Durdu, A., Celtek, S.A., Yilmaz, A.: “An Adaptive Method for Traffic Signal Control Based on Fuzzy Logic With Webster and Modified Webster Formula Using SUMO Traffic Simulator,“. IEEE Access. 9, 102985–102997 (2021)CrossRef
10.
go back to reference Yau, K.-L.A., Qadir, J., Khoo, H.L., Ling, M.H., Komisarczuk, P.: A survey on reinforcement learning models and algorithms for traffic signal control,. ACM Comput. Surv. (CSUR). 50(3), 1–38 (2017)CrossRef Yau, K.-L.A., Qadir, J., Khoo, H.L., Ling, M.H., Komisarczuk, P.: A survey on reinforcement learning models and algorithms for traffic signal control,. ACM Comput. Surv. (CSUR). 50(3), 1–38 (2017)CrossRef
11.
go back to reference Ali, M.E.M., Durdu, A., Çeltek, S.A., Gültekin, S.S.:“Fuzzy logic and webster’s optimal cycle based decentralized coordinated adaptive traffic control method,“ (2020) Ali, M.E.M., Durdu, A., Çeltek, S.A., Gültekin, S.S.:“Fuzzy logic and webster’s optimal cycle based decentralized coordinated adaptive traffic control method,“ (2020)
12.
go back to reference Wei, H., Zheng, G., Gayah, V., Li, Z.: “A survey on traffic signal control methods,“ arXiv preprint arXiv:08117, 2019. (1904) Wei, H., Zheng, G., Gayah, V., Li, Z.: “A survey on traffic signal control methods,“ arXiv preprint arXiv:08117, 2019. (1904)
13.
go back to reference Celtek, S.A., Durdu, A., Ali, M.E.M.: “Evaluating Action Durations for Adaptive Traffic Signal Control Based On Deep Q-Learning,“International Journal of Intelligent Transportation Systems Research, (2021). /06/29 2021. Celtek, S.A., Durdu, A., Ali, M.E.M.: “Evaluating Action Durations for Adaptive Traffic Signal Control Based On Deep Q-Learning,“International Journal of Intelligent Transportation Systems Research, (2021). /06/29 2021.
14.
go back to reference Celtek, S.A., Durdu, A., Ali, M.E.M.: “Real-time Traffic Signal Control with Swarm Optimization Methods,“ Measurement, July 2020 2020 Celtek, S.A., Durdu, A., Ali, M.E.M.: “Real-time Traffic Signal Control with Swarm Optimization Methods,“ Measurement, July 2020 2020
15.
go back to reference Araghi, S., Khosravi, A., Creighton, D.: A review on computational intelligence methods for controlling traffic signal timing,. Expert Syst. Appl. 42(3), 1538–1550 (2015)CrossRef Araghi, S., Khosravi, A., Creighton, D.: A review on computational intelligence methods for controlling traffic signal timing,. Expert Syst. Appl. 42(3), 1538–1550 (2015)CrossRef
16.
go back to reference Webster, F.: “Traffic signal settings, road research technical paper no. 39,“Road Research Laboratory, (1958) Webster, F.: “Traffic signal settings, road research technical paper no. 39,“Road Research Laboratory, (1958)
17.
go back to reference Gartner, N.H., Stamatiadis, C.: Arterial-based control of traffic flow in urban grid networks,. Math. Comput. Model. 35, 5–6 (2002)CrossRefMATHMathSciNet Gartner, N.H., Stamatiadis, C.: Arterial-based control of traffic flow in urban grid networks,. Math. Comput. Model. 35, 5–6 (2002)CrossRefMATHMathSciNet
18.
go back to reference Mannion, P., Duggan, J., Howley, E.: An experimental review of reinforcement learning algorithms for adaptive traffic signal control,“. In: Autonomic road transport support systems, pp. 47–66. Springer (2016) Mannion, P., Duggan, J., Howley, E.: An experimental review of reinforcement learning algorithms for adaptive traffic signal control,“. In: Autonomic road transport support systems, pp. 47–66. Springer (2016)
19.
go back to reference Boukerche, A., Zhong, D., Sun, P.: “A Novel Reinforcement Learning-based Cooperative Traffic Signal System through Max-pressure Control,“IEEE Transactions on Vehicular Technology, (2021) Boukerche, A., Zhong, D., Sun, P.: “A Novel Reinforcement Learning-based Cooperative Traffic Signal System through Max-pressure Control,“IEEE Transactions on Vehicular Technology, (2021)
20.
go back to reference Shaikh, P.W., El-Abd, M., Khanafer, M., Gao, K.: “A Review on Swarm Intelligence and Evolutionary Algorithms for Solving the Traffic Signal Control Problem,“IEEE Transactions on Intelligent Transportation Systems, (2020) Shaikh, P.W., El-Abd, M., Khanafer, M., Gao, K.: “A Review on Swarm Intelligence and Evolutionary Algorithms for Solving the Traffic Signal Control Problem,“IEEE Transactions on Intelligent Transportation Systems, (2020)
21.
go back to reference Celtek, S.A., Durdu, A.: “An Operant Conditioning Approach For Larga Scale Social Optimization Algorithms,“. Konya Mühendislik Bilimleri Dergisi. 8, 38–45 (2020) Celtek, S.A., Durdu, A.: “An Operant Conditioning Approach For Larga Scale Social Optimization Algorithms,“. Konya Mühendislik Bilimleri Dergisi. 8, 38–45 (2020)
22.
go back to reference Abdoos, M.: “Fuzzy Graph and Collective Multi-Agent Reinforcement Learning for Traffic Signals Control,“IEEE Intelligent Systems, (2020) Abdoos, M.: “Fuzzy Graph and Collective Multi-Agent Reinforcement Learning for Traffic Signals Control,“IEEE Intelligent Systems, (2020)
23.
go back to reference Liang, X., Du, X., Wang, G., Han, Z.: “A deep reinforcement learning network for traffic light cycle control,“. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)CrossRef Liang, X., Du, X., Wang, G., Han, Z.: “A deep reinforcement learning network for traffic light cycle control,“. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)CrossRef
24.
go back to reference Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control,. IEEE Trans. cybernetics. 50(6), 2687–2700 (2019)CrossRef Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control,. IEEE Trans. cybernetics. 50(6), 2687–2700 (2019)CrossRef
25.
go back to reference Zhang, C., Jin, S., Xue, W., Xie, X., Chen, S., Chen, R.: “Independent Reinforcement Learning for Weakly Cooperative Multiagent Traffic Control Problem,“IEEE Transactions on Vehicular Technology, (2021) Zhang, C., Jin, S., Xue, W., Xie, X., Chen, S., Chen, R.: “Independent Reinforcement Learning for Weakly Cooperative Multiagent Traffic Control Problem,“IEEE Transactions on Vehicular Technology, (2021)
26.
go back to reference Boukerche, A., Zhong, D., Sun, P.: “FECO: An Efficient Deep Reinforcement Learning-based Fuel-Economic Traffic Signal Control Scheme,“IEEE Transactions on Sustainable Computing, (2021) Boukerche, A., Zhong, D., Sun, P.: “FECO: An Efficient Deep Reinforcement Learning-based Fuel-Economic Traffic Signal Control Scheme,“IEEE Transactions on Sustainable Computing, (2021)
27.
go back to reference Joo, H., Ahmed, S.H., Lim, Y.: “Traffic signal control for smart cities using reinforcement learning,“Computer Communications, (2020) Joo, H., Ahmed, S.H., Lim, Y.: “Traffic signal control for smart cities using reinforcement learning,“Computer Communications, (2020)
28.
go back to reference Kaffash, S., Nguyen, A.T., Zhu, J.: Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis,. Int. J. Prod. Econ. 231, 107868 (2021)CrossRef Kaffash, S., Nguyen, A.T., Zhu, J.: Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis,. Int. J. Prod. Econ. 231, 107868 (2021)CrossRef
29.
go back to reference Wang, X., Ke, L., Qiao, Z., Chai, X.: “Large-scale traffic signal control using a novel multiagent reinforcement learning,“IEEE transactions on cybernetics, (2020) Wang, X., Ke, L., Qiao, Z., Chai, X.: “Large-scale traffic signal control using a novel multiagent reinforcement learning,“IEEE transactions on cybernetics, (2020)
30.
go back to reference Balaji, P., Srinivasan, D.: Multi-agent system in urban traffic signal control,. IEEE Comput. Intell. Mag. 5(4), 43–51 (2010) Balaji, P., Srinivasan, D.: Multi-agent system in urban traffic signal control,. IEEE Comput. Intell. Mag. 5(4), 43–51 (2010)
31.
go back to reference Zhang, Y., Zhou, Y.: Distributed coordination control of traffic network flow using adaptive genetic algorithm based on cloud computing,. J. Netw. Comput. Appl. 119, 110–120 (2018)CrossRef Zhang, Y., Zhou, Y.: Distributed coordination control of traffic network flow using adaptive genetic algorithm based on cloud computing,. J. Netw. Comput. Appl. 119, 110–120 (2018)CrossRef
32.
go back to reference Vergis, S., Komianos, V., Tsoumanis, G., Tsipis, A., Oikonomou, K.: “A Low-Cost Vehicular Traffic Monitoring System Using Fog Computing,“. Smart Cities. 3(1), 138–156 (2020)CrossRef Vergis, S., Komianos, V., Tsoumanis, G., Tsipis, A., Oikonomou, K.: “A Low-Cost Vehicular Traffic Monitoring System Using Fog Computing,“. Smart Cities. 3(1), 138–156 (2020)CrossRef
33.
go back to reference Dass, P., Misra, S., Roy, C.: “T-safe: Trustworthy service provisioning for IoT-based intelligent transport systems,“. IEEE Trans. Veh. Technol. 69(9), 9509–9517 (2020)CrossRef Dass, P., Misra, S., Roy, C.: “T-safe: Trustworthy service provisioning for IoT-based intelligent transport systems,“. IEEE Trans. Veh. Technol. 69(9), 9509–9517 (2020)CrossRef
34.
go back to reference Tang, C., Xia, S., Zhu, C., Wei, X.: Phase timing optimization for smart traffic control based on fog computing. IEEE Access. 7, 84217–84228 (2019)CrossRef Tang, C., Xia, S., Zhu, C., Wei, X.: Phase timing optimization for smart traffic control based on fog computing. IEEE Access. 7, 84217–84228 (2019)CrossRef
35.
go back to reference Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog computing for sustainable smart cities: A survey,. ACM Comput. Surv. (CSUR). 50(3), 1–43 (2017)CrossRef Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog computing for sustainable smart cities: A survey,. ACM Comput. Surv. (CSUR). 50(3), 1–43 (2017)CrossRef
36.
go back to reference Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: “Fog computing and its role in the internet of things,“ in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13–16. (2012) Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: “Fog computing and its role in the internet of things,“ in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13–16. (2012)
37.
go back to reference Jovanović, A., Nikolić, M., Teodorović, D.: Area-wide urban traffic control: A Bee Colony Optimization approach,. Transp. Res. Part C: Emerg. Technol. 77, 329–350 (2017)CrossRef Jovanović, A., Nikolić, M., Teodorović, D.: Area-wide urban traffic control: A Bee Colony Optimization approach,. Transp. Res. Part C: Emerg. Technol. 77, 329–350 (2017)CrossRef
38.
go back to reference Orcutt, F.L. Jr.: The traffic signal book. (1993) Orcutt, F.L. Jr.: The traffic signal book. (1993)
39.
go back to reference Papacostas, C.S., Prevedouros, P.D.: Transportation engineering and planning. (1993) Papacostas, C.S., Prevedouros, P.D.: Transportation engineering and planning. (1993)
Metadata
Title
A Novel Adaptive Traffic Signal Control Based on Cloud/Fog/Edge Computing
Authors
Seyit Alperen Celtek
Akif Durdu
Publication date
01-08-2022
Publisher
Springer US
Published in
International Journal of Intelligent Transportation Systems Research / Issue 3/2022
Print ISSN: 1348-8503
Electronic ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-022-00315-3

Premium Partners