Skip to main content
Top
Published in:

01-07-2024 | Original Paper

A novel approach to estimate rock deformation under uniaxial compression using a machine learning technique

Authors: Pradeep T., Divesh Ranjan kumar, Manish Kumar, Pijush Samui, Danial Jahed Armaghani

Published in: Bulletin of Engineering Geology and the Environment | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Understanding rock deformation is crucial for various engineering and geological applications, including mining, tunneling, and earthquake prediction. In this study, we propose a novel approach to estimate rock deformation under uniaxial compression using extreme gradient boosting (XGB), Extra trees regression (ETR), and K-Nearest Neighbours (KNN) algorithms. The proposed methodology involves three main steps. First, a comprehensive dataset of rock samples is collected, including various positions of the strain gauge, stress, and corresponding deformation measurements under uniaxial compression. These properties serve as input and output features for the machine learning models. Second, the XGB, ETR, and KNN algorithms are trained and tested using the collected dataset. These algorithms are known for their ability to handle complex relationships and nonlinearities, making them suitable for modeling the intricate behavior of rock deformation under compression. To ensure accurate predictions, a cross-validation technique is employed to optimize the hyperparameters of each algorithm. The trained models are then evaluated using various performance evaluations like performance parameters, Actual and predicted curves, Rank analysis, Sensitivity Analysis, Error matrix, and OBJ criteria. All models perform better (i.e., coefficient of determination greater than 0.9), however, XGB is a more robust model when compared to other models. Overall, this study presents a novel and promising approach to estimating rock deformation under uniaxial compression, offering a valuable tool for engineers and geologists working in the field of rock mechanics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdi Y, Momeni E, Armaghani DJ (2023a) Elastic modulus estimation of weak rock samples using random forest technique. Bull Eng Geol Environ 82:1–20CrossRef Abdi Y, Momeni E, Armaghani DJ (2023a) Elastic modulus estimation of weak rock samples using random forest technique. Bull Eng Geol Environ 82:1–20CrossRef
go back to reference Armaghani DJ, Momeni E, Asteris PG (2020) Application of group method of data handling technique in assessing deformation of rock mass. Metaheuristic Comput Appl 1:1–18 Armaghani DJ, Momeni E, Asteris PG (2020) Application of group method of data handling technique in assessing deformation of rock mass. Metaheuristic Comput Appl 1:1–18
go back to reference Bentéjac C, Csörgő A, Martínez-Muñoz G (2021) A comparative analysis of gradient boosting algorithms. Springer, NetherlandsCrossRef Bentéjac C, Csörgő A, Martínez-Muñoz G (2021) A comparative analysis of gradient boosting algorithms. Springer, NetherlandsCrossRef
go back to reference Bhatia N (2010) Vandana. Survey of Nearest Neighbor Techniques 8:302–305 Bhatia N (2010) Vandana. Survey of Nearest Neighbor Techniques 8:302–305
go back to reference Cioffi R, Travaglioni M, Piscitelli G et al (2020) Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability 12:492CrossRef Cioffi R, Travaglioni M, Piscitelli G et al (2020) Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability 12:492CrossRef
go back to reference Dietterich TG (2000) Ensemble methods in machine learning. In: Multiple Classifier Systems: First International Workshop, MCS 2000 Cagliari, Italy, June 21–23, 2000 Proceedings 1. Springer, pp 1–15 Dietterich TG (2000) Ensemble methods in machine learning. In: Multiple Classifier Systems: First International Workshop, MCS 2000 Cagliari, Italy, June 21–23, 2000 Proceedings 1. Springer, pp 1–15
go back to reference Dowlatshahi MB, Hashemi A, Samaei M, Momeni E (2023) Feasibility of Artificial Intelligence Techniques in Rock Characterization. In: Artificial Intelligence in Mechatronics and Civil Engineering: Bridging the Gap. Springer, pp 93–110 Dowlatshahi MB, Hashemi A, Samaei M, Momeni E (2023) Feasibility of Artificial Intelligence Techniques in Rock Characterization. In: Artificial Intelligence in Mechatronics and Civil Engineering: Bridging the Gap. Springer, pp 93–110
go back to reference Fix E, Hodges Jr JL (1952) Discriminatory analysis-nonparametric discrimination: Small sample performance. California Univ Berkeley Fix E, Hodges Jr JL (1952) Discriminatory analysis-nonparametric discrimination: Small sample performance. California Univ Berkeley
go back to reference C.S.Gundewar (2014) Government of India Ministry of Mines INDIAN BUREAU OF MINES Controller General Indian Bureau of Mines Application of Rock Mechanics in Surface and Underground Mining. Indian Bur Mines, Indira Bhavan, Civ Lines C.S.Gundewar (2014) Government of India Ministry of Mines INDIAN BUREAU OF MINES Controller General Indian Bureau of Mines Application of Rock Mechanics in Surface and Underground Mining. Indian Bur Mines, Indira Bhavan, Civ Lines
go back to reference Indraratna B, Armaghani DJ, Correia AG et al (2023) Prediction of resilient modulus of ballast under cyclic loading using machine learning techniques. Transp Geotech 38:100895CrossRef Indraratna B, Armaghani DJ, Correia AG et al (2023) Prediction of resilient modulus of ballast under cyclic loading using machine learning techniques. Transp Geotech 38:100895CrossRef
go back to reference Jahed Armaghani D, Kumar D, Samui P et al (2021) A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine. Eng Comput 37:3221–3235CrossRef Jahed Armaghani D, Kumar D, Samui P et al (2021) A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine. Eng Comput 37:3221–3235CrossRef
go back to reference Koopialipoor M, Asteris PG, Mohammed AS et al (2022) Introducing stacking machine learning approaches for the prediction of rock deformation. Transp Geotech 34:100756CrossRef Koopialipoor M, Asteris PG, Mohammed AS et al (2022) Introducing stacking machine learning approaches for the prediction of rock deformation. Transp Geotech 34:100756CrossRef
go back to reference Kumar M, Biswas R, Kumar DR et al (2022c) Metaheuristic Models for the Prediction of Bearing Capacity of Pile Foundation 2:129–147 Kumar M, Biswas R, Kumar DR et al (2022c) Metaheuristic Models for the Prediction of Bearing Capacity of Pile Foundation 2:129–147
go back to reference Kunapuli G (2023) Ensemble Methods for Machine Learning. Simon and Schuster Kunapuli G (2023) Ensemble Methods for Machine Learning. Simon and Schuster
go back to reference Liu Y, Zhao T, Ju W, Shi S (2017) Materials discovery and design using machine learning. J Mater 3:159–177 Liu Y, Zhao T, Ju W, Shi S (2017) Materials discovery and design using machine learning. J Mater 3:159–177
go back to reference Medawela S, Armaghani DJ, Indraratna B et al (2023) Development of an advanced machine learning model to predict the pH of groundwater in permeable reactive barriers (PRBs) located in acidic terrain. Comput Geotech 161:105557CrossRef Medawela S, Armaghani DJ, Indraratna B et al (2023) Development of an advanced machine learning model to predict the pH of groundwater in permeable reactive barriers (PRBs) located in acidic terrain. Comput Geotech 161:105557CrossRef
go back to reference Nazir R, Momeni E, Armaghani DJ, Amin MFM (2013a) Correlation between unconfined compressive strength and indirect tensile strength of limestone rock samples. Electron J Geotech Eng 18 I:1737–1746 Nazir R, Momeni E, Armaghani DJ, Amin MFM (2013a) Correlation between unconfined compressive strength and indirect tensile strength of limestone rock samples. Electron J Geotech Eng 18 I:1737–1746
go back to reference Nazir R, Momeni E, Armaghani DJ, Amin MFM (2013b) Prediction of unconfined compressive strength of limestone rock samples using l-type schmidt hammer. Electron J Geotech Eng 18 I:1767–1775 Nazir R, Momeni E, Armaghani DJ, Amin MFM (2013b) Prediction of unconfined compressive strength of limestone rock samples using l-type schmidt hammer. Electron J Geotech Eng 18 I:1767–1775
go back to reference Petr W, Lubomir S, Jan N et al (2016) Determination of stress state in rock mass using strain gauge probes CCBO. Procedia Eng 149:544–552CrossRef Petr W, Lubomir S, Jan N et al (2016) Determination of stress state in rock mass using strain gauge probes CCBO. Procedia Eng 149:544–552CrossRef
go back to reference Sagi O, Rokach L (2018) Ensemble learning: A survey. Wiley Interdiscip Rev Data Min Knowl Discov 8:e1249CrossRef Sagi O, Rokach L (2018) Ensemble learning: A survey. Wiley Interdiscip Rev Data Min Knowl Discov 8:e1249CrossRef
go back to reference Xu S, Wang S, Zhang P et al (2020) Study on strain characterization and failure location of rock fracture process using distributed optical fiber under uniaxial compression. Sensors 20:3853CrossRef Xu S, Wang S, Zhang P et al (2020) Study on strain characterization and failure location of rock fracture process using distributed optical fiber under uniaxial compression. Sensors 20:3853CrossRef
Metadata
Title
A novel approach to estimate rock deformation under uniaxial compression using a machine learning technique
Authors
Pradeep T.
Divesh Ranjan kumar
Manish Kumar
Pijush Samui
Danial Jahed Armaghani
Publication date
01-07-2024
Publisher
Springer Berlin Heidelberg
Published in
Bulletin of Engineering Geology and the Environment / Issue 7/2024
Print ISSN: 1435-9529
Electronic ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-024-03775-x

Other articles of this Issue 7/2024

Bulletin of Engineering Geology and the Environment 7/2024 Go to the issue