Skip to main content
Top
Published in: Cellulose 14/2021

30-07-2021 | Original Research

A novel cellulose membrane from cattail fibers as separator for Li-ion batteries

Authors: Xiaobin Zhao, Wenbo Wang, Chenghao Huang, Lei Luo, Zhongmin Deng, Wei Guo, Jie Xu, Zhenghua Meng

Published in: Cellulose | Issue 14/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cattail is widely abounding in wetlands and marshes and is usually considered as an abundant and inexpensive biomass lignocellulose resource due to its rapid growth. In this paper, a novel cellulose (named as TOCF) separator for Li-ion batteries (LIBs) is successfully fabricated from cattail fibers by 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation and vacuum filtration. The proposed TOCF membrane shows good tensile strength (75 MPa), superior thermal dimensional stability, sufficient porosity (64.8%), outstanding liquid electrolyte uptake (323%) as well as large ionic conductivity (2.83 mS cm−1). Moreover, the Li/LiFePO4 cell assembled using the TOCF separator demonstrates better discharge capacity and cycling stability than the cell with a commercial Celgard separator. Thus, the TOCF separator is a promising and low-cost candidate used in high-performance LIBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez JY (2016) Nanocomposite poly(vynilidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochem Acta 214:38–48CrossRef Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez JY (2016) Nanocomposite poly(vynilidene fluoride)/nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochem Acta 214:38–48CrossRef
go back to reference Boriboon D, Vongsetskul T, Limthongkul P, Kobsiriphat W, Tammawat P (2018) Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries. Carbohyd Polym 189:145–151CrossRef Boriboon D, Vongsetskul T, Limthongkul P, Kobsiriphat W, Tammawat P (2018) Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries. Carbohyd Polym 189:145–151CrossRef
go back to reference Cao S, Dong T, Xu G, Wang F (2016) Study on structure and wetting characteristic of cattail fibers as natural materials for oil sorption. Environ Technol 37:3193–3199PubMedCrossRef Cao S, Dong T, Xu G, Wang F (2016) Study on structure and wetting characteristic of cattail fibers as natural materials for oil sorption. Environ Technol 37:3193–3199PubMedCrossRef
go back to reference Cao S, Dong T, Xu G, Wang F (2018) Cyclic filtration behavior of structured cattail fiber assembly for oils removal from wastewater. Environ Technol 39:1833–1840PubMedCrossRef Cao S, Dong T, Xu G, Wang F (2018) Cyclic filtration behavior of structured cattail fiber assembly for oils removal from wastewater. Environ Technol 39:1833–1840PubMedCrossRef
go back to reference Chen W, Liu Y, Ying M, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2 -(2-hydroxyethyl methacrylate). J Power Sourc 273:1127–1135CrossRef Chen W, Liu Y, Ying M, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2 -(2-hydroxyethyl methacrylate). J Power Sourc 273:1127–1135CrossRef
go back to reference Chun SJ, Choi ES, Lee EH, Kim JH, Lee SY, Lee SY (2012) Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 22:16618–16626CrossRef Chun SJ, Choi ES, Lee EH, Kim JH, Lee SY, Lee SY (2012) Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 22:16618–16626CrossRef
go back to reference Deng N et al (2016) A review on separators for lithium-sulfur battery: progress and prospects. J Power Sourc 331:132–155CrossRef Deng N et al (2016) A review on separators for lithium-sulfur battery: progress and prospects. J Power Sourc 331:132–155CrossRef
go back to reference Fang C, Yang S, Zhao X, Du P, Xiong J (2016) Electrospun montmorillonite modified poly(vinylidene fluoride) nanocomposite separators for lithium-ion batteries. Mater Res Bull 79:1–7CrossRef Fang C, Yang S, Zhao X, Du P, Xiong J (2016) Electrospun montmorillonite modified poly(vinylidene fluoride) nanocomposite separators for lithium-ion batteries. Mater Res Bull 79:1–7CrossRef
go back to reference Feng G, Li Z, Mi L, Zheng J, Feng X, Chen W (2018) Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J Power Sourc 376:177–183CrossRef Feng G, Li Z, Mi L, Zheng J, Feng X, Chen W (2018) Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J Power Sourc 376:177–183CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference Guo T, Song J, Jin Y, Sun Z, Li L (2019) thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohyd Polym 206:801–810CrossRef Guo T, Song J, Jin Y, Sun Z, Li L (2019) thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohyd Polym 206:801–810CrossRef
go back to reference Han G et al (2019a) Efficient carbon-based catalyst derived from natural cattail fiber for hydrogen evolution reaction. J Solid State Electrochem 274:207–214CrossRef Han G et al (2019a) Efficient carbon-based catalyst derived from natural cattail fiber for hydrogen evolution reaction. J Solid State Electrochem 274:207–214CrossRef
go back to reference Han G, Liu Y, Gao J, Han L, Li B (2019b) Local plant-derived carbon sheets as sustainable catalysts for efficient oxygen reduction reaction ACS sustainable. Chem Eng 7:2107–2115 Han G, Liu Y, Gao J, Han L, Li B (2019b) Local plant-derived carbon sheets as sustainable catalysts for efficient oxygen reduction reaction ACS sustainable. Chem Eng 7:2107–2115
go back to reference Huang C, Ji H, Guo B, Luo L, Xu W, Li J, Xu J (2019) Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators. Cellulose 26:6669–6681CrossRef Huang C, Ji H, Guo B, Luo L, Xu W, Li J, Xu J (2019) Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators. Cellulose 26:6669–6681CrossRef
go back to reference Huang C et al (2020) TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohyd Polym 230:115570 Huang C et al (2020) TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohyd Polym 230:115570
go back to reference Huang F, Liu W, Li P, Ning J, Wei Q (2016) Electrochemical properties of LLTO/fluoropolymer-shell cellulose-core fibrous membrane for separator of high performance lithium-ion battery. Materials 9:75PubMedCentralCrossRef Huang F, Liu W, Li P, Ning J, Wei Q (2016) Electrochemical properties of LLTO/fluoropolymer-shell cellulose-core fibrous membrane for separator of high performance lithium-ion battery. Materials 9:75PubMedCentralCrossRef
go back to reference Huang F, Xu Y, Peng B, Su Y, Jiang F, Hsieh YL, Wei Q (2015) Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery ACS sustainable. Chem Eng 3:932–940 Huang F, Xu Y, Peng B, Su Y, Jiang F, Hsieh YL, Wei Q (2015) Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery ACS sustainable. Chem Eng 3:932–940
go back to reference Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662CrossRef Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662CrossRef
go back to reference Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based li-ion batteries: a review. Cellulose 20:1523–1545CrossRef Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based li-ion batteries: a review. Cellulose 20:1523–1545CrossRef
go back to reference Jeong H-S, Hong SC, Lee S (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364:177–182CrossRef Jeong H-S, Hong SC, Lee S (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364:177–182CrossRef
go back to reference Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sourc 279:21–27CrossRef Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sourc 279:21–27CrossRef
go back to reference Jiang F, Yu N, Lei Y, Yuan F, Yu Q, Zhong C (2016) Core-shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510:1–9CrossRef Jiang F, Yu N, Lei Y, Yuan F, Yu Q, Zhong C (2016) Core-shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510:1–9CrossRef
go back to reference Li H, Lin CE, Shi JL, Ma XT, Zhu BK, Zhu LP (2014) Preparation and characterization of safety PVDF/P(MMA-co-PEGMA) active separators by studying the liquid electrolyte distribution in this kind of membrane. Electrochem Acta 115:317–325CrossRef Li H, Lin CE, Shi JL, Ma XT, Zhu BK, Zhu LP (2014) Preparation and characterization of safety PVDF/P(MMA-co-PEGMA) active separators by studying the liquid electrolyte distribution in this kind of membrane. Electrochem Acta 115:317–325CrossRef
go back to reference Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for lithium-ion batteries. Adv Mater 21:4593–4607CrossRef Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for lithium-ion batteries. Adv Mater 21:4593–4607CrossRef
go back to reference Li X, He J, Wu D, Zhang M, Meng J, Ni P (2015) Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators. Electrochim Acta 167:396–403CrossRef Li X, He J, Wu D, Zhang M, Meng J, Ni P (2015) Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators. Electrochim Acta 167:396–403CrossRef
go back to reference Liao H, Hong H, Zhang H, Li Z (2016) Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries. J Membr Sci 498:147–157CrossRef Liao H, Hong H, Zhang H, Li Z (2016) Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries. J Membr Sci 498:147–157CrossRef
go back to reference Liu C, Shao Z, Wang J, Lu C, Wang Z (2016) Eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ composite separator for high-performance lithium-ion battery. RSC Adv 6:97912–97920CrossRef Liu C, Shao Z, Wang J, Lu C, Wang Z (2016) Eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ composite separator for high-performance lithium-ion battery. RSC Adv 6:97912–97920CrossRef
go back to reference Liu J, Yang K, Mo Y, Wang S, Han D, Xiao M, Meng Y (2018) Highly safe lithium-ion batteries: high strength separator from polyformaldehyde/cellulose nanofibers blend. J Power Sourc 400:502–510CrossRef Liu J, Yang K, Mo Y, Wang S, Han D, Xiao M, Meng Y (2018) Highly safe lithium-ion batteries: high strength separator from polyformaldehyde/cellulose nanofibers blend. J Power Sourc 400:502–510CrossRef
go back to reference Luo D et al (2018) Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery. Compos Sci Technol 157:119–125CrossRef Luo D et al (2018) Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery. Compos Sci Technol 157:119–125CrossRef
go back to reference Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11:1696–1700CrossRef Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11:1696–1700CrossRef
go back to reference Pan R et al (2016) Mesoporous Cladophora cellulose separators for lithium-ion batteries. J Power Sourc 321:185–192CrossRef Pan R et al (2016) Mesoporous Cladophora cellulose separators for lithium-ion batteries. J Power Sourc 321:185–192CrossRef
go back to reference Pan R, Wang Z, Rui S, Lindh J, Kristina Edström K, Strømme M, Nyholm L (2017) Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose 24:2903–2911CrossRef Pan R, Wang Z, Rui S, Lindh J, Kristina Edström K, Strømme M, Nyholm L (2017) Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose 24:2903–2911CrossRef
go back to reference Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989CrossRef Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989CrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRef
go back to reference Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
go back to reference Sheng J, Tong S, He Z, Yang R (2017) Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24:4103–4122CrossRef Sheng J, Tong S, He Z, Yang R (2017) Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24:4103–4122CrossRef
go back to reference Shi J, Xia Y, Yuan Z, Hu H, Li X, Zhang H, Liu Z (2015) Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Sci Rep 5:8255PubMedPubMedCentralCrossRef Shi J, Xia Y, Yuan Z, Hu H, Li X, Zhang H, Liu Z (2015) Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Sci Rep 5:8255PubMedPubMedCentralCrossRef
go back to reference Wang S, Zhang D, Shao Z, Liu S (2019) Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohyd Polym 214:328–336CrossRef Wang S, Zhang D, Shao Z, Liu S (2019) Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohyd Polym 214:328–336CrossRef
go back to reference Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K (2015) Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22:1311–1320CrossRef Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K (2015) Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 22:1311–1320CrossRef
go back to reference Wu T, Chen H, Wang Q, Sun J (2017) Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. J Hazard Mater 344:733–741PubMedCrossRef Wu T, Chen H, Wang Q, Sun J (2017) Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. J Hazard Mater 344:733–741PubMedCrossRef
go back to reference Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014a) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81CrossRef Xiao S, Wang F, Yang Y, Chang Z, Wu Y (2014a) An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv 4:76–81CrossRef
go back to reference Xiao SY, Yang YQ, Li MX, Wang FX, Chang Z, Wu YP, Liu X (2014b) A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. J Power Sourc 270:53–58CrossRef Xiao SY, Yang YQ, Li MX, Wang FX, Chang Z, Wu YP, Liu X (2014b) A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. J Power Sourc 270:53–58CrossRef
go back to reference Xu Q, Wei C, Fan L, Peng S, Xu W, Xu J (2017) A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose 24:1889–1899CrossRef Xu Q, Wei C, Fan L, Peng S, Xu W, Xu J (2017) A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose 24:1889–1899CrossRef
go back to reference Yu M, Han Y, Li Y, Li J, Wang L (2018) Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors. Carbohyd Polym 199:555–562CrossRef Yu M, Han Y, Li Y, Li J, Wang L (2018) Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors. Carbohyd Polym 199:555–562CrossRef
go back to reference Yvonne T et al (2014) Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator. Cellulose 21:2811–2818CrossRef Yvonne T et al (2014) Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator. Cellulose 21:2811–2818CrossRef
go back to reference Zhang C, Li H, Wang S, Cao Y, Yang H, Ai X, Zhong F (2020) A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. J Energy Chem 44:33–40CrossRef Zhang C, Li H, Wang S, Cao Y, Yang H, Ai X, Zhong F (2020) A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. J Energy Chem 44:33–40CrossRef
go back to reference Zhang J et al (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134PubMedCrossRef Zhang J et al (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134PubMedCrossRef
go back to reference Zhang J et al (2016) Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. J Membr Sci 497:259–269CrossRef Zhang J et al (2016) Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. J Membr Sci 497:259–269CrossRef
go back to reference Zhang J et al (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935PubMedPubMedCentralCrossRef Zhang J et al (2014) Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935PubMedPubMedCentralCrossRef
go back to reference Zhang L et al (2019) synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. J Membr Sci 577:137–144CrossRef Zhang L et al (2019) synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. J Membr Sci 577:137–144CrossRef
go back to reference Zhang L, Liu Z, Cui G, Chen L (2015b) Biomass-derived materials for electrochemical energy storages. Prog Polym Sci 43:136–164CrossRef Zhang L, Liu Z, Cui G, Chen L (2015b) Biomass-derived materials for electrochemical energy storages. Prog Polym Sci 43:136–164CrossRef
go back to reference Zhang LC, Sun X, Hu Z, Yuan CC, Chen CH (2012) Rice paper as a separator membrane in lithium-ion batteries. J Power Sourc 204:149–154CrossRef Zhang LC, Sun X, Hu Z, Yuan CC, Chen CH (2012) Rice paper as a separator membrane in lithium-ion batteries. J Power Sourc 204:149–154CrossRef
go back to reference Zhou M-L, Zhang Z, Xu J, Wei J, Yu J, Yang Z-Y (2020) PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. J Electr Chem 868:114195CrossRef Zhou M-L, Zhang Z, Xu J, Wei J, Yu J, Yang Z-Y (2020) PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. J Electr Chem 868:114195CrossRef
go back to reference Zhu C (2019) Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery. J Membr Sci 588:117169CrossRef Zhu C (2019) Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery. J Membr Sci 588:117169CrossRef
go back to reference Zhu M, Lan J, Tan C, Sui G, Yang X (2016) Degradable cellulose acetate/poly-L-lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J Mater Chem A 4:12136–12143CrossRef Zhu M, Lan J, Tan C, Sui G, Yang X (2016) Degradable cellulose acetate/poly-L-lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J Mater Chem A 4:12136–12143CrossRef
go back to reference Zhu Y, Xiao S, Shi Y, Yang Y, Wu Y (2013) A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J Mater Chem A 1:7790–7797CrossRef Zhu Y, Xiao S, Shi Y, Yang Y, Wu Y (2013) A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J Mater Chem A 1:7790–7797CrossRef
go back to reference Zolin L, Destro M, Chaussy D, Penazzi N, Gerbaldi C, Beneventi D (2015) Aqueous processing of paper separators by filtration dewatering: towards li-ion paper batteries. J Mater Chem A 28:14894–14901CrossRef Zolin L, Destro M, Chaussy D, Penazzi N, Gerbaldi C, Beneventi D (2015) Aqueous processing of paper separators by filtration dewatering: towards li-ion paper batteries. J Mater Chem A 28:14894–14901CrossRef
Metadata
Title
A novel cellulose membrane from cattail fibers as separator for Li-ion batteries
Authors
Xiaobin Zhao
Wenbo Wang
Chenghao Huang
Lei Luo
Zhongmin Deng
Wei Guo
Jie Xu
Zhenghua Meng
Publication date
30-07-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 14/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04110-3

Other articles of this Issue 14/2021

Cellulose 14/2021 Go to the issue