Skip to main content
Top

06-09-2024 | Research

A Novel Cognitive Rough Approach for Severity Analysis of Autistic Children Using Spherical Fuzzy Bipolar Soft Sets

Authors: Ghous Ali, Nimra Lateef, Muhammad Usman Zia, Tehseen Abbas

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Autism spectrum disorders (ASDs) pose complex challenges, characterized by atypical behaviors, sensory sensitivities, and difficulties in social interaction. Despite extensive research, their exact causes remain elusive, indicating a multifactorial interplay of genetic, environmental, and neurological factors. This complexity calls for innovative approaches to ASD understanding and management. Motivated by the need to address the nuanced and uncertain nature of ASD-related data, in this study, we introduce a novel hybrid model called rough spherical fuzzy bipolar soft sets (RSFBSSs) by integrating rough sets, spherical fuzzy sets, and bipolar soft sets, which accommodates imprecision inherent in clinical assessments. We build upon foundational concepts of RSFBSS theory, developing a comprehensive algorithm for uncertain multiple attribute decision-making (MADM). Leveraging this framework, we aim to assess ASD symptom severity in pediatric populations, considering diverse contributing factors to ASD pathogenesis. The RSFBSSs offer advantages over existing methodologies, providing a robust framework for handling complex ASD data. The algorithmic framework facilitates accurate and individualized assessments of ASD symptomatology. To validate our model’s efficacy, we conduct a comparative analysis with preexisting hybrid models, employing quantitative metrics and qualitative evaluations. Through this comprehensive evaluation, we demonstrate the superior performance and versatility of RSFBSSs, offering promising avenues for advancing ASD management.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aguiar GA, Fernández DM, Reyes OG, Fonticiella YH. Diagnosis in children with autism spectrum disorders: their development in text comprehension. Revista de Ciencias Médicas de Pinar del Río. 2016;20(6):729–37. Aguiar GA, Fernández DM, Reyes OG, Fonticiella YH. Diagnosis in children with autism spectrum disorders: their development in text comprehension. Revista de Ciencias Médicas de Pinar del Río. 2016;20(6):729–37.
2.
go back to reference Ahmmad J, Mahmood T, Chinram R, Iampan A. Some average aggregation operators based on spherical fuzzy soft sets and their applications in multi-criteria decision making. AIMS Mathematics. 2021;6(7):7798–833.MathSciNetCrossRef Ahmmad J, Mahmood T, Chinram R, Iampan A. Some average aggregation operators based on spherical fuzzy soft sets and their applications in multi-criteria decision making. AIMS Mathematics. 2021;6(7):7798–833.MathSciNetCrossRef
3.
go back to reference Akram M, Ali G. Hybrid models for decision-making based on rough Pythagorean fuzzy bipolar soft information. Granular Computing. 2020;5:1–15.CrossRef Akram M, Ali G. Hybrid models for decision-making based on rough Pythagorean fuzzy bipolar soft information. Granular Computing. 2020;5:1–15.CrossRef
4.
go back to reference Akram M, Ali G, Shabir M. A hybrid decision-making framework using rough mF bipolar soft environment. Granular Computing. 2021;6:539–55.CrossRef Akram M, Ali G, Shabir M. A hybrid decision-making framework using rough mF bipolar soft environment. Granular Computing. 2021;6:539–55.CrossRef
5.
go back to reference Akram M, Zahid K, Kahraman C. Integrated outranking techniques based on spherical fuzzy information for the digitalization of transportation system. Applied Soft Computing. 2023;134:109992. Akram M, Zahid K, Kahraman C. Integrated outranking techniques based on spherical fuzzy information for the digitalization of transportation system. Applied Soft Computing. 2023;134:109992.
6.
go back to reference Albahri AS, Zaidan AA, AlSattar HA, Hamid RA, Albahri OS, Qahtan S, Alamoodi AH. Towards physician’s experience: development of machine learning model for the diagnosis of autism spectrum disorders based on complex T-spherical fuzzy-weighted zero-inconsistency method. Computational Intelligence. 2023;39(2):225–57.CrossRef Albahri AS, Zaidan AA, AlSattar HA, Hamid RA, Albahri OS, Qahtan S, Alamoodi AH. Towards physician’s experience: development of machine learning model for the diagnosis of autism spectrum disorders based on complex T-spherical fuzzy-weighted zero-inconsistency method. Computational Intelligence. 2023;39(2):225–57.CrossRef
8.
go back to reference Ali G, Abidin MZU, Xin Q, Tawfiq FM. Ranking of downstream fish passage designs for a hydroelectric project under spherical fuzzy bipolar soft framework. Symmetry. 2022;14(10):2141.CrossRef Ali G, Abidin MZU, Xin Q, Tawfiq FM. Ranking of downstream fish passage designs for a hydroelectric project under spherical fuzzy bipolar soft framework. Symmetry. 2022;14(10):2141.CrossRef
9.
go back to reference Ali G, Alolaiyan H, Pamučar D, Asif M, Lateef N. A novel MADM framework under q-rung orthopair fuzzy bipolar soft sets. Mathematics. 2021;9(17):2163.CrossRef Ali G, Alolaiyan H, Pamučar D, Asif M, Lateef N. A novel MADM framework under q-rung orthopair fuzzy bipolar soft sets. Mathematics. 2021;9(17):2163.CrossRef
10.
go back to reference Ali G, Ansari MN. Multiattribute decision-making under Fermatean fuzzy bipolar soft framework. Granular Computing. 2022;7(2):337–52.CrossRef Ali G, Ansari MN. Multiattribute decision-making under Fermatean fuzzy bipolar soft framework. Granular Computing. 2022;7(2):337–52.CrossRef
11.
go back to reference Ashraf S, Abdullah S, Mahmood T, Ghani F, Mahmood T. Spherical fuzzy sets and their applications in multi-attribute decision making problems. Journal of Intelligent and Fuzzy Systems. 2019;36(3):2829–44.CrossRef Ashraf S, Abdullah S, Mahmood T, Ghani F, Mahmood T. Spherical fuzzy sets and their applications in multi-attribute decision making problems. Journal of Intelligent and Fuzzy Systems. 2019;36(3):2829–44.CrossRef
13.
go back to reference Babitha KV, Sunil J. Soft set relations and functions. Computers and Mathematics with Applications. 2010;60(7):1840–9.MathSciNetCrossRef Babitha KV, Sunil J. Soft set relations and functions. Computers and Mathematics with Applications. 2010;60(7):1840–9.MathSciNetCrossRef
14.
go back to reference Basri MAFA, Ismail WSW, Nor NK, Tohit NM, Ahmad MN, Aun NSM, Daud TIM. Validation of key components in designing a social skills training content using virtual reality for high functioning autism youth-a fuzzy Delphi method. PloS One. 2024;19(4). Basri MAFA, Ismail WSW, Nor NK, Tohit NM, Ahmad MN, Aun NSM, Daud TIM. Validation of key components in designing a social skills training content using virtual reality for high functioning autism youth-a fuzzy Delphi method. PloS One. 2024;19(4).
15.
go back to reference Cuong BC. Picture fuzzy sets-first results. part 1, seminar neuro-fuzzy systems with applications. Institute of Mathematics, Hanoi. 2013 Cuong BC. Picture fuzzy sets-first results. part 1, seminar neuro-fuzzy systems with applications. Institute of Mathematics, Hanoi. 2013
16.
go back to reference Cuong BC, Kreinovich V. Picture fuzzy sets. Journal of Computer Science and Cybernetics. 2014;30(4):409–20. Cuong BC, Kreinovich V. Picture fuzzy sets. Journal of Computer Science and Cybernetics. 2014;30(4):409–20.
17.
go back to reference Gámez-Granados JC, Esteban A, Rodriguez-Lozano FJ, Zafra A. An algorithm based on fuzzy ordinal classification to predict students’ academic performance. it Applied Intelligence. 2023;53:27537-27559. Gámez-Granados JC, Esteban A, Rodriguez-Lozano FJ, Zafra A. An algorithm based on fuzzy ordinal classification to predict students’ academic performance. it Applied Intelligence. 2023;53:27537-27559.
18.
go back to reference Garg H, Arora R. A nonlinear-programming methodology for multi-attribute decision-making problem with interval-valued intuitionistic fuzzy soft sets information. Applied Intelligence. 2018;48:2031–46.CrossRef Garg H, Arora R. A nonlinear-programming methodology for multi-attribute decision-making problem with interval-valued intuitionistic fuzzy soft sets information. Applied Intelligence. 2018;48:2031–46.CrossRef
20.
go back to reference Gündoğdu FK, Kahraman C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent and Fuzzy Systems. 2019;36(1):337–52.CrossRef Gündoğdu FK, Kahraman C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent and Fuzzy Systems. 2019;36(1):337–52.CrossRef
22.
go back to reference Komorowski J, Pawlak Z, Polkowski L, Skowron A. Rough sets: a tutorial. Rough fuzzy hybridization: A new trend in decision-making; 1999. p. 3–98. Komorowski J, Pawlak Z, Polkowski L, Skowron A. Rough sets: a tutorial. Rough fuzzy hybridization: A new trend in decision-making; 1999. p. 3–98.
23.
go back to reference Kshirsagar PP, Surve AR, Pujari SD. Identification of autism spectrum disorder using machine learning and deep learning techniques. In Intelligent Solutions for Cognitive Disorders 2024 (pp. 87-98). IGI Global. Kshirsagar PP, Surve AR, Pujari SD. Identification of autism spectrum disorder using machine learning and deep learning techniques. In Intelligent Solutions for Cognitive Disorders 2024 (pp. 87-98). IGI Global.
24.
go back to reference Levy SE, DS M, Schultz RT. Autism. Lancet. 2009;374(9701):1627-1638. Levy SE, DS M, Schultz RT. Autism. Lancet. 2009;374(9701):1627-1638.
25.
go back to reference Mahmood T, Ullah K, Khan Q, Jan N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Computing and Applications. 2019;31:7041–53.CrossRef Mahmood T, Ullah K, Khan Q, Jan N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Computing and Applications. 2019;31:7041–53.CrossRef
26.
27.
go back to reference Malik N, Shabir M. Rough fuzzy bipolar soft sets and application in decision-making problems. Soft Computing. 2019;23:1603–14.CrossRef Malik N, Shabir M. Rough fuzzy bipolar soft sets and application in decision-making problems. Soft Computing. 2019;23:1603–14.CrossRef
28.
go back to reference Mardani A, Hooker RE, Ozkul S, Yifan S, Nilashi M, Sabzi HZ, Fei GC. Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: a review of three decades of research with recent developments. Expert Systems with Applications. 2019;137:202–31.CrossRef Mardani A, Hooker RE, Ozkul S, Yifan S, Nilashi M, Sabzi HZ, Fei GC. Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: a review of three decades of research with recent developments. Expert Systems with Applications. 2019;137:202–31.CrossRef
29.
go back to reference Molodtsov D. Soft set theory-first results. Computers and Mathematics with Applications. 1999;37(4–5):9–31.MathSciNet Molodtsov D. Soft set theory-first results. Computers and Mathematics with Applications. 1999;37(4–5):9–31.MathSciNet
30.
go back to reference Mythili MS, Shanavas AM. A study on autism spectrum disorders using classification techniques. International Journal of Soft Computing and Engineering. 2014;4(5):88–91. Mythili MS, Shanavas AM. A study on autism spectrum disorders using classification techniques. International Journal of Soft Computing and Engineering. 2014;4(5):88–91.
31.
go back to reference Naz M, Shabir M. On fuzzy bipolar soft sets, their algebraic structures and applications. Journal of Intelligent and Fuzzy Systems. 2014;26(4):1645–56.MathSciNetCrossRef Naz M, Shabir M. On fuzzy bipolar soft sets, their algebraic structures and applications. Journal of Intelligent and Fuzzy Systems. 2014;26(4):1645–56.MathSciNetCrossRef
32.
go back to reference Paik B, Mondal SK. Scoring rule and its application in intuitionistic fuzzy parameterized soft set-based decision-making problem. Journal of Ambient Intelligence and Humanized Computing. 2023;14(10):14209–24.CrossRef Paik B, Mondal SK. Scoring rule and its application in intuitionistic fuzzy parameterized soft set-based decision-making problem. Journal of Ambient Intelligence and Humanized Computing. 2023;14(10):14209–24.CrossRef
33.
go back to reference Pawlak Z, Grzymala-Busse J, Slowinski R, Ziarko W. Rough sets. Communications of the ACM. 1995;38(11):88–95.CrossRef Pawlak Z, Grzymala-Busse J, Slowinski R, Ziarko W. Rough sets. Communications of the ACM. 1995;38(11):88–95.CrossRef
35.
go back to reference Perveen PAF, Sunil JJ, Babitha KV, Garg H. Spherical fuzzy soft sets and its applications in decision-making problems. Journal of Intelligent and Fuzzy Systems. 2019;37(6):8237–50. Perveen PAF, Sunil JJ, Babitha KV, Garg H. Spherical fuzzy soft sets and its applications in decision-making problems. Journal of Intelligent and Fuzzy Systems. 2019;37(6):8237–50.
36.
go back to reference Randolph-Gips M, Srinivasan P. Modeling autism: a systems biology approach. Journal of Clinical Bioinformatics. 2012;2:1–15.CrossRef Randolph-Gips M, Srinivasan P. Modeling autism: a systems biology approach. Journal of Clinical Bioinformatics. 2012;2:1–15.CrossRef
37.
go back to reference Salgado LNR, Argilagos MER, Garrido AS, Herrera ARV, Al-Subhi SHS. Model for the diagnosis of autism based on neutrosophic cognitive maps. Neutrosophic Sets and Systems. 2021;44:125–32. Salgado LNR, Argilagos MER, Garrido AS, Herrera ARV, Al-Subhi SHS. Model for the diagnosis of autism based on neutrosophic cognitive maps. Neutrosophic Sets and Systems. 2021;44:125–32.
40.
go back to reference Yager RR. Pythagorean fuzzy subsets. 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). 2013;57-61. Yager RR. Pythagorean fuzzy subsets. 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). 2013;57-61.
Metadata
Title
A Novel Cognitive Rough Approach for Severity Analysis of Autistic Children Using Spherical Fuzzy Bipolar Soft Sets
Authors
Ghous Ali
Nimra Lateef
Muhammad Usman Zia
Tehseen Abbas
Publication date
06-09-2024
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10349-2

Premium Partner